Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grutsk1 | Structured version Visualization version GIF version |
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10539.) (Contributed by Mario Carneiro, 17-Jun-2013.) |
Ref | Expression |
---|---|
grutsk1 | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → Tr 𝑇) | |
2 | tskpw 10509 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
3 | 2 | adantlr 712 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
4 | tskpr 10526 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
5 | 4 | 3expa 1117 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
6 | 5 | ralrimiva 3103 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
7 | 6 | adantlr 712 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
8 | elmapg 8628 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) | |
9 | 8 | adantlr 712 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) |
10 | tskurn 10545 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦:𝑥⟶𝑇) → ∪ ran 𝑦 ∈ 𝑇) | |
11 | 10 | 3expia 1120 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦:𝑥⟶𝑇 → ∪ ran 𝑦 ∈ 𝑇)) |
12 | 9, 11 | sylbid 239 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) → ∪ ran 𝑦 ∈ 𝑇)) |
13 | 12 | ralrimiv 3102 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇) |
14 | 3, 7, 13 | 3jca 1127 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
15 | 14 | ralrimiva 3103 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
16 | elgrug 10548 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) | |
17 | 16 | adantr 481 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) |
18 | 1, 15, 17 | mpbir2and 710 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 𝒫 cpw 4533 {cpr 4563 ∪ cuni 4839 Tr wtr 5191 ran crn 5590 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 Tarskictsk 10504 Univcgru 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-smo 8177 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-r1 9522 df-card 9697 df-aleph 9698 df-cf 9699 df-acn 9700 df-ac 9872 df-wina 10440 df-ina 10441 df-tsk 10505 df-gru 10547 |
This theorem is referenced by: grutsk 10578 inagrud 41914 |
Copyright terms: Public domain | W3C validator |