![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grutsk1 | Structured version Visualization version GIF version |
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10784.) (Contributed by Mario Carneiro, 17-Jun-2013.) |
Ref | Expression |
---|---|
grutsk1 | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → Tr 𝑇) | |
2 | tskpw 10754 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
3 | 2 | adantlr 712 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
4 | tskpr 10771 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
5 | 4 | 3expa 1117 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
6 | 5 | ralrimiva 3145 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
7 | 6 | adantlr 712 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
8 | elmapg 8839 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) | |
9 | 8 | adantlr 712 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) |
10 | tskurn 10790 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦:𝑥⟶𝑇) → ∪ ran 𝑦 ∈ 𝑇) | |
11 | 10 | 3expia 1120 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦:𝑥⟶𝑇 → ∪ ran 𝑦 ∈ 𝑇)) |
12 | 9, 11 | sylbid 239 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) → ∪ ran 𝑦 ∈ 𝑇)) |
13 | 12 | ralrimiv 3144 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇) |
14 | 3, 7, 13 | 3jca 1127 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
15 | 14 | ralrimiva 3145 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
16 | elgrug 10793 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) | |
17 | 16 | adantr 480 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) |
18 | 1, 15, 17 | mpbir2and 710 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3060 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 Tr wtr 5265 ran crn 5677 ⟶wf 6539 (class class class)co 7412 ↑m cmap 8826 Tarskictsk 10749 Univcgru 10791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-ac2 10464 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-smo 8352 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-oi 9511 df-har 9558 df-r1 9765 df-card 9940 df-aleph 9941 df-cf 9942 df-acn 9943 df-ac 10117 df-wina 10685 df-ina 10686 df-tsk 10750 df-gru 10792 |
This theorem is referenced by: grutsk 10823 inagrud 43518 |
Copyright terms: Public domain | W3C validator |