MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk1 Structured version   Visualization version   GIF version

Theorem grutsk1 10781
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10743.) (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
grutsk1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ)

Proof of Theorem grutsk1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → Tr 𝑇)
2 tskpw 10713 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
32adantlr 715 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
4 tskpr 10730 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
543expa 1118 . . . . . 6 (((𝑇 ∈ Tarski ∧ 𝑥𝑇) ∧ 𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
65ralrimiva 3126 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
76adantlr 715 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
8 elmapg 8815 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) ↔ 𝑦:𝑥𝑇))
98adantlr 715 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) ↔ 𝑦:𝑥𝑇))
10 tskurn 10749 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇𝑦:𝑥𝑇) → ran 𝑦𝑇)
11103expia 1121 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦:𝑥𝑇 ran 𝑦𝑇))
129, 11sylbid 240 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) → ran 𝑦𝑇))
1312ralrimiv 3125 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇)
143, 7, 133jca 1128 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))
1514ralrimiva 3126 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))
16 elgrug 10752 . . 3 (𝑇 ∈ Tarski → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))))
1716adantr 480 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))))
181, 15, 17mpbir2and 713 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3045  𝒫 cpw 4566  {cpr 4594   cuni 4874  Tr wtr 5217  ran crn 5642  wf 6510  (class class class)co 7390  m cmap 8802  Tarskictsk 10708  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-smo 8318  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-har 9517  df-r1 9724  df-card 9899  df-aleph 9900  df-cf 9901  df-acn 9902  df-ac 10076  df-wina 10644  df-ina 10645  df-tsk 10709  df-gru 10751
This theorem is referenced by:  grutsk  10782  inagrud  44292
  Copyright terms: Public domain W3C validator