![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grutsk1 | Structured version Visualization version GIF version |
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10780.) (Contributed by Mario Carneiro, 17-Jun-2013.) |
Ref | Expression |
---|---|
grutsk1 | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → Tr 𝑇) | |
2 | tskpw 10750 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
3 | 2 | adantlr 713 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
4 | tskpr 10767 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
5 | 4 | 3expa 1118 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
6 | 5 | ralrimiva 3146 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
7 | 6 | adantlr 713 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
8 | elmapg 8835 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) | |
9 | 8 | adantlr 713 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) |
10 | tskurn 10786 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦:𝑥⟶𝑇) → ∪ ran 𝑦 ∈ 𝑇) | |
11 | 10 | 3expia 1121 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦:𝑥⟶𝑇 → ∪ ran 𝑦 ∈ 𝑇)) |
12 | 9, 11 | sylbid 239 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) → ∪ ran 𝑦 ∈ 𝑇)) |
13 | 12 | ralrimiv 3145 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇) |
14 | 3, 7, 13 | 3jca 1128 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
15 | 14 | ralrimiva 3146 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
16 | elgrug 10789 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) | |
17 | 16 | adantr 481 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) |
18 | 1, 15, 17 | mpbir2and 711 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ∀wral 3061 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 Tr wtr 5265 ran crn 5677 ⟶wf 6539 (class class class)co 7411 ↑m cmap 8822 Tarskictsk 10745 Univcgru 10787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-ac2 10460 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-smo 8348 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-har 9554 df-r1 9761 df-card 9936 df-aleph 9937 df-cf 9938 df-acn 9939 df-ac 10113 df-wina 10681 df-ina 10682 df-tsk 10746 df-gru 10788 |
This theorem is referenced by: grutsk 10819 inagrud 43357 |
Copyright terms: Public domain | W3C validator |