Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grutsk1 | Structured version Visualization version GIF version |
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10397.) (Contributed by Mario Carneiro, 17-Jun-2013.) |
Ref | Expression |
---|---|
grutsk1 | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → Tr 𝑇) | |
2 | tskpw 10367 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
3 | 2 | adantlr 715 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) |
4 | tskpr 10384 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) | |
5 | 4 | 3expa 1120 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) ∧ 𝑦 ∈ 𝑇) → {𝑥, 𝑦} ∈ 𝑇) |
6 | 5 | ralrimiva 3105 | . . . . 5 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
7 | 6 | adantlr 715 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇) |
8 | elmapg 8521 | . . . . . . 7 ⊢ ((𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) | |
9 | 8 | adantlr 715 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) ↔ 𝑦:𝑥⟶𝑇)) |
10 | tskurn 10403 | . . . . . . 7 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦:𝑥⟶𝑇) → ∪ ran 𝑦 ∈ 𝑇) | |
11 | 10 | 3expia 1123 | . . . . . 6 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦:𝑥⟶𝑇 → ∪ ran 𝑦 ∈ 𝑇)) |
12 | 9, 11 | sylbid 243 | . . . . 5 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑦 ∈ (𝑇 ↑m 𝑥) → ∪ ran 𝑦 ∈ 𝑇)) |
13 | 12 | ralrimiv 3104 | . . . 4 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇) |
14 | 3, 7, 13 | 3jca 1130 | . . 3 ⊢ (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
15 | 14 | ralrimiva 3105 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)) |
16 | elgrug 10406 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) | |
17 | 16 | adantr 484 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ∈ 𝑇 ∧ ∀𝑦 ∈ 𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑇)))) |
18 | 1, 15, 17 | mpbir2and 713 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2110 ∀wral 3061 𝒫 cpw 4513 {cpr 4543 ∪ cuni 4819 Tr wtr 5161 ran crn 5552 ⟶wf 6376 (class class class)co 7213 ↑m cmap 8508 Tarskictsk 10362 Univcgru 10404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-ac2 10077 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-smo 8083 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-oi 9126 df-har 9173 df-r1 9380 df-card 9555 df-aleph 9556 df-cf 9557 df-acn 9558 df-ac 9730 df-wina 10298 df-ina 10299 df-tsk 10363 df-gru 10405 |
This theorem is referenced by: grutsk 10436 inagrud 41587 |
Copyright terms: Public domain | W3C validator |