MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk1 Structured version   Visualization version   GIF version

Theorem grutsk1 10890
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 10852.) (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
grutsk1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ)

Proof of Theorem grutsk1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → Tr 𝑇)
2 tskpw 10822 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
32adantlr 714 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
4 tskpr 10839 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
543expa 1118 . . . . . 6 (((𝑇 ∈ Tarski ∧ 𝑥𝑇) ∧ 𝑦𝑇) → {𝑥, 𝑦} ∈ 𝑇)
65ralrimiva 3152 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
76adantlr 714 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇)
8 elmapg 8897 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) ↔ 𝑦:𝑥𝑇))
98adantlr 714 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) ↔ 𝑦:𝑥𝑇))
10 tskurn 10858 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇𝑦:𝑥𝑇) → ran 𝑦𝑇)
11103expia 1121 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦:𝑥𝑇 ran 𝑦𝑇))
129, 11sylbid 240 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝑦 ∈ (𝑇m 𝑥) → ran 𝑦𝑇))
1312ralrimiv 3151 . . . 4 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇)
143, 7, 133jca 1128 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝑥𝑇) → (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))
1514ralrimiva 3152 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))
16 elgrug 10861 . . 3 (𝑇 ∈ Tarski → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))))
1716adantr 480 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝑇 ∈ Univ ↔ (Tr 𝑇 ∧ ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∀𝑦𝑇 {𝑥, 𝑦} ∈ 𝑇 ∧ ∀𝑦 ∈ (𝑇m 𝑥) ran 𝑦𝑇))))
181, 15, 17mpbir2and 712 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇) → 𝑇 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wral 3067  𝒫 cpw 4622  {cpr 4650   cuni 4931  Tr wtr 5283  ran crn 5701  wf 6569  (class class class)co 7448  m cmap 8884  Tarskictsk 10817  Univcgru 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-smo 8402  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-r1 9833  df-card 10008  df-aleph 10009  df-cf 10010  df-acn 10011  df-ac 10185  df-wina 10753  df-ina 10754  df-tsk 10818  df-gru 10860
This theorem is referenced by:  grutsk  10891  inagrud  44265
  Copyright terms: Public domain W3C validator