MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliniseg2 Structured version   Visualization version   GIF version

Theorem eliniseg2 6124
Description: Eliminate the class existence constraint in eliniseg 6112. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.)
Assertion
Ref Expression
eliniseg2 (Rel 𝐴 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))

Proof of Theorem eliniseg2
StepHypRef Expression
1 relcnv 6122 . . 3 Rel 𝐴
2 elrelimasn 6104 . . 3 (Rel 𝐴 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
31, 2ax-mp 5 . 2 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)
4 relbrcnvg 6123 . 2 (Rel 𝐴 → (𝐵𝐴𝐶𝐶𝐴𝐵))
53, 4bitrid 283 1 (Rel 𝐴 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  {csn 4626   class class class wbr 5143  ccnv 5684  cima 5688  Rel wrel 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698
This theorem is referenced by:  isunit  20373  frege133d  43778
  Copyright terms: Public domain W3C validator