MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliniseg2 Structured version   Visualization version   GIF version

Theorem eliniseg2 6080
Description: Eliminate the class existence constraint in eliniseg 6068. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.)
Assertion
Ref Expression
eliniseg2 (Rel 𝐴 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))

Proof of Theorem eliniseg2
StepHypRef Expression
1 relcnv 6078 . . 3 Rel 𝐴
2 elrelimasn 6060 . . 3 (Rel 𝐴 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
31, 2ax-mp 5 . 2 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)
4 relbrcnvg 6079 . 2 (Rel 𝐴 → (𝐵𝐴𝐶𝐶𝐴𝐵))
53, 4bitrid 283 1 (Rel 𝐴 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  {csn 4592   class class class wbr 5110  ccnv 5640  cima 5644  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  isunit  20289  frege133d  43761
  Copyright terms: Public domain W3C validator