Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eliniseg2 | Structured version Visualization version GIF version |
Description: Eliminate the class existence constraint in eliniseg 5991. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
Ref | Expression |
---|---|
eliniseg2 | ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6001 | . . 3 ⊢ Rel ◡𝐴 | |
2 | elrelimasn 5982 | . . 3 ⊢ (Rel ◡𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶) |
4 | relbrcnvg 6002 | . 2 ⊢ (Rel 𝐴 → (𝐵◡𝐴𝐶 ↔ 𝐶𝐴𝐵)) | |
5 | 3, 4 | syl5bb 282 | 1 ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 {csn 4558 class class class wbr 5070 ◡ccnv 5579 “ cima 5583 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: isunit 19814 frege133d 41262 |
Copyright terms: Public domain | W3C validator |