| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliniseg2 | Structured version Visualization version GIF version | ||
| Description: Eliminate the class existence constraint in eliniseg 6042. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
| Ref | Expression |
|---|---|
| eliniseg2 | ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6052 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | elrelimasn 6034 | . . 3 ⊢ (Rel ◡𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶) |
| 4 | relbrcnvg 6053 | . 2 ⊢ (Rel 𝐴 → (𝐵◡𝐴𝐶 ↔ 𝐶𝐴𝐵)) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 {csn 4573 class class class wbr 5089 ◡ccnv 5613 “ cima 5617 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: isunit 20291 frege133d 43868 |
| Copyright terms: Public domain | W3C validator |