MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon Structured version   Visualization version   GIF version

Theorem elon 6320
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1 𝐴 ∈ V
Assertion
Ref Expression
elon (𝐴 ∈ On ↔ Ord 𝐴)

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2 𝐴 ∈ V
2 elong 6319 . 2 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ On ↔ Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3438  Ord word 6310  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3440  df-ss 3922  df-uni 4862  df-tr 5203  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315
This theorem is referenced by:  tron  6334  0elon  6366  smogt  8297  dfrecs3  8302  rdglim2  8361  omeulem1  8507  naddcllem  8601  isfinite2  9203  r0weon  9925  cflim3  10175  inar1  10688  addsproplem7  27905  ellimits  35883  dford3lem2  43000
  Copyright terms: Public domain W3C validator