| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elon | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elon.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elon | ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elon.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elong 6319 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3438 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-ss 3922 df-uni 4862 df-tr 5203 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: tron 6334 0elon 6366 smogt 8297 dfrecs3 8302 rdglim2 8361 omeulem1 8507 naddcllem 8601 isfinite2 9203 r0weon 9925 cflim3 10175 inar1 10688 addsproplem7 27905 ellimits 35883 dford3lem2 43000 |
| Copyright terms: Public domain | W3C validator |