MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon Structured version   Visualization version   GIF version

Theorem elon 6315
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1 𝐴 ∈ V
Assertion
Ref Expression
elon (𝐴 ∈ On ↔ Ord 𝐴)

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2 𝐴 ∈ V
2 elong 6314 . 2 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ On ↔ Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  Vcvv 3436  Ord word 6305  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3919  df-uni 4860  df-tr 5199  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310
This theorem is referenced by:  tron  6329  0elon  6361  smogt  8287  dfrecs3  8292  rdglim2  8351  omeulem1  8497  naddcllem  8591  isfinite2  9182  r0weon  9903  cflim3  10153  inar1  10666  addsproplem7  27919  ellimits  35950  dford3lem2  43066
  Copyright terms: Public domain W3C validator