| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elon | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elon.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elon | ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elon.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elong 6314 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3919 df-uni 4860 df-tr 5199 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: tron 6329 0elon 6361 smogt 8287 dfrecs3 8292 rdglim2 8351 omeulem1 8497 naddcllem 8591 isfinite2 9182 r0weon 9903 cflim3 10153 inar1 10666 addsproplem7 27919 ellimits 35950 dford3lem2 43066 |
| Copyright terms: Public domain | W3C validator |