| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elon | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elon.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elon | ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elon.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elong 6319 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-uni 4859 df-tr 5201 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: tron 6334 0elon 6366 smogt 8293 dfrecs3 8298 rdglim2 8357 omeulem1 8503 naddcllem 8597 isfinite2 9189 r0weon 9910 cflim3 10160 inar1 10673 addsproplem7 27919 ellimits 35973 dford3lem2 43145 |
| Copyright terms: Public domain | W3C validator |