MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon Structured version   Visualization version   GIF version

Theorem elon 6370
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1 𝐴 ∈ V
Assertion
Ref Expression
elon (𝐴 ∈ On ↔ Ord 𝐴)

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2 𝐴 ∈ V
2 elong 6369 . 2 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ On ↔ Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  Vcvv 3474  Ord word 6360  Oncon0 6361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-in 3954  df-ss 3964  df-uni 4908  df-tr 5265  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365
This theorem is referenced by:  tron  6384  0elon  6415  smogt  8363  dfrecs3  8368  dfrecs3OLD  8369  rdglim2  8428  omeulem1  8578  naddcllem  8671  isfinite2  9297  r0weon  10003  cflim3  10253  inar1  10766  addsproplem7  27448  ellimits  34870  dford3lem2  41751
  Copyright terms: Public domain W3C validator