MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon Structured version   Visualization version   GIF version

Theorem elon 6383
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1 𝐴 ∈ V
Assertion
Ref Expression
elon (𝐴 ∈ On ↔ Ord 𝐴)

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2 𝐴 ∈ V
2 elong 6382 . 2 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ On ↔ Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  Vcvv 3473  Ord word 6373  Oncon0 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-v 3475  df-in 3956  df-ss 3966  df-uni 4913  df-tr 5270  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6377  df-on 6378
This theorem is referenced by:  tron  6397  0elon  6428  smogt  8394  dfrecs3  8399  dfrecs3OLD  8400  rdglim2  8459  omeulem1  8609  naddcllem  8703  isfinite2  9332  r0weon  10043  cflim3  10293  inar1  10806  addsproplem7  27912  ellimits  35539  dford3lem2  42479
  Copyright terms: Public domain W3C validator