| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elon | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elon.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elon | ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elon.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elong 6365 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3464 Ord word 6356 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-ss 3948 df-uni 4889 df-tr 5235 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: tron 6380 0elon 6412 smogt 8386 dfrecs3 8391 dfrecs3OLD 8392 rdglim2 8451 omeulem1 8599 naddcllem 8693 isfinite2 9311 r0weon 10031 cflim3 10281 inar1 10794 addsproplem7 27939 ellimits 35933 dford3lem2 43026 |
| Copyright terms: Public domain | W3C validator |