MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem7 Structured version   Visualization version   GIF version

Theorem addsproplem7 27905
Description: Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
Assertion
Ref Expression
addsproplem7 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem7
StepHypRef Expression
1 bdayelon 27722 . . . 4 ( bday 𝑌) ∈ On
2 fvex 6903 . . . . 5 ( bday 𝑌) ∈ V
32elon 6374 . . . 4 (( bday 𝑌) ∈ On ↔ Ord ( bday 𝑌))
41, 3mpbi 229 . . 3 Ord ( bday 𝑌)
5 bdayelon 27722 . . . 4 ( bday 𝑍) ∈ On
6 fvex 6903 . . . . 5 ( bday 𝑍) ∈ V
76elon 6374 . . . 4 (( bday 𝑍) ∈ On ↔ Ord ( bday 𝑍))
85, 7mpbi 229 . . 3 Ord ( bday 𝑍)
9 ordtri3or 6397 . . 3 ((Ord ( bday 𝑌) ∧ Ord ( bday 𝑍)) → (( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌)))
104, 8, 9mp2an 690 . 2 (( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌))
11 simpl 481 . . . . . 6 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝜑)
12 addsproplem.1 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
1311, 12syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
14 addspropord.2 . . . . . 6 (𝜑𝑋 No )
1511, 14syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑋 No )
16 addspropord.3 . . . . . 6 (𝜑𝑌 No )
1711, 16syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑌 No )
18 addspropord.4 . . . . . 6 (𝜑𝑍 No )
1911, 18syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑍 No )
20 addspropord.5 . . . . . 6 (𝜑𝑌 <s 𝑍)
2111, 20syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑌 <s 𝑍)
22 simpr 483 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → ( bday 𝑌) ∈ ( bday 𝑍))
2313, 15, 17, 19, 21, 22addsproplem4 27902 . . . 4 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
2423ex 411 . . 3 (𝜑 → (( bday 𝑌) ∈ ( bday 𝑍) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
25 simpl 481 . . . . . 6 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝜑)
2625, 12syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2725, 14syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑋 No )
2825, 16syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑌 No )
2925, 18syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑍 No )
3025, 20syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑌 <s 𝑍)
31 simpr 483 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → ( bday 𝑌) = ( bday 𝑍))
3226, 27, 28, 29, 30, 31addsproplem6 27904 . . . 4 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
3332ex 411 . . 3 (𝜑 → (( bday 𝑌) = ( bday 𝑍) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
3412adantr 479 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
3514adantr 479 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑋 No )
3616adantr 479 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑌 No )
3718adantr 479 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑍 No )
3820adantr 479 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑌 <s 𝑍)
39 simpr 483 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → ( bday 𝑍) ∈ ( bday 𝑌))
4034, 35, 36, 37, 38, 39addsproplem5 27903 . . . 4 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
4140ex 411 . . 3 (𝜑 → (( bday 𝑍) ∈ ( bday 𝑌) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
4224, 33, 413jaod 1425 . 2 (𝜑 → ((( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
4310, 42mpi 20 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3o 1083   = wceq 1533  wcel 2098  wral 3051  cun 3939   class class class wbr 5144  Ord word 6364  Oncon0 6365  cfv 6543  (class class class)co 7413   +no cnadd 8679   No csur 27586   <s cslt 27587   bday cbday 27588   +s cadds 27889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-nadd 8680  df-no 27589  df-slt 27590  df-bday 27591  df-sslt 27727  df-scut 27729  df-0s 27770  df-made 27787  df-old 27788  df-left 27790  df-right 27791  df-norec2 27879  df-adds 27890
This theorem is referenced by:  addsprop  27906
  Copyright terms: Public domain W3C validator