MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem7 Structured version   Visualization version   GIF version

Theorem addsproplem7 28026
Description: Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
Assertion
Ref Expression
addsproplem7 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem7
StepHypRef Expression
1 bdayelon 27839 . . . 4 ( bday 𝑌) ∈ On
2 fvex 6933 . . . . 5 ( bday 𝑌) ∈ V
32elon 6404 . . . 4 (( bday 𝑌) ∈ On ↔ Ord ( bday 𝑌))
41, 3mpbi 230 . . 3 Ord ( bday 𝑌)
5 bdayelon 27839 . . . 4 ( bday 𝑍) ∈ On
6 fvex 6933 . . . . 5 ( bday 𝑍) ∈ V
76elon 6404 . . . 4 (( bday 𝑍) ∈ On ↔ Ord ( bday 𝑍))
85, 7mpbi 230 . . 3 Ord ( bday 𝑍)
9 ordtri3or 6427 . . 3 ((Ord ( bday 𝑌) ∧ Ord ( bday 𝑍)) → (( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌)))
104, 8, 9mp2an 691 . 2 (( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌))
11 simpl 482 . . . . . 6 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝜑)
12 addsproplem.1 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
1311, 12syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
14 addspropord.2 . . . . . 6 (𝜑𝑋 No )
1511, 14syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑋 No )
16 addspropord.3 . . . . . 6 (𝜑𝑌 No )
1711, 16syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑌 No )
18 addspropord.4 . . . . . 6 (𝜑𝑍 No )
1911, 18syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑍 No )
20 addspropord.5 . . . . . 6 (𝜑𝑌 <s 𝑍)
2111, 20syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑌 <s 𝑍)
22 simpr 484 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → ( bday 𝑌) ∈ ( bday 𝑍))
2313, 15, 17, 19, 21, 22addsproplem4 28023 . . . 4 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
2423ex 412 . . 3 (𝜑 → (( bday 𝑌) ∈ ( bday 𝑍) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
25 simpl 482 . . . . . 6 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝜑)
2625, 12syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2725, 14syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑋 No )
2825, 16syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑌 No )
2925, 18syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑍 No )
3025, 20syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑌 <s 𝑍)
31 simpr 484 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → ( bday 𝑌) = ( bday 𝑍))
3226, 27, 28, 29, 30, 31addsproplem6 28025 . . . 4 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
3332ex 412 . . 3 (𝜑 → (( bday 𝑌) = ( bday 𝑍) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
3412adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
3514adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑋 No )
3616adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑌 No )
3718adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑍 No )
3820adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑌 <s 𝑍)
39 simpr 484 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → ( bday 𝑍) ∈ ( bday 𝑌))
4034, 35, 36, 37, 38, 39addsproplem5 28024 . . . 4 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
4140ex 412 . . 3 (𝜑 → (( bday 𝑍) ∈ ( bday 𝑌) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
4224, 33, 413jaod 1429 . 2 (𝜑 → ((( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
4310, 42mpi 20 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086   = wceq 1537  wcel 2108  wral 3067  cun 3974   class class class wbr 5166  Ord word 6394  Oncon0 6395  cfv 6573  (class class class)co 7448   +no cnadd 8721   No csur 27702   <s cslt 27703   bday cbday 27704   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  addsprop  28027
  Copyright terms: Public domain W3C validator