MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem7 Structured version   Visualization version   GIF version

Theorem addsproplem7 27905
Description: Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
Assertion
Ref Expression
addsproplem7 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem7
StepHypRef Expression
1 bdayelon 27704 . . . 4 ( bday 𝑌) ∈ On
2 fvex 6839 . . . . 5 ( bday 𝑌) ∈ V
32elon 6320 . . . 4 (( bday 𝑌) ∈ On ↔ Ord ( bday 𝑌))
41, 3mpbi 230 . . 3 Ord ( bday 𝑌)
5 bdayelon 27704 . . . 4 ( bday 𝑍) ∈ On
6 fvex 6839 . . . . 5 ( bday 𝑍) ∈ V
76elon 6320 . . . 4 (( bday 𝑍) ∈ On ↔ Ord ( bday 𝑍))
85, 7mpbi 230 . . 3 Ord ( bday 𝑍)
9 ordtri3or 6343 . . 3 ((Ord ( bday 𝑌) ∧ Ord ( bday 𝑍)) → (( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌)))
104, 8, 9mp2an 692 . 2 (( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌))
11 simpl 482 . . . . . 6 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝜑)
12 addsproplem.1 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
1311, 12syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
14 addspropord.2 . . . . . 6 (𝜑𝑋 No )
1511, 14syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑋 No )
16 addspropord.3 . . . . . 6 (𝜑𝑌 No )
1711, 16syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑌 No )
18 addspropord.4 . . . . . 6 (𝜑𝑍 No )
1911, 18syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑍 No )
20 addspropord.5 . . . . . 6 (𝜑𝑌 <s 𝑍)
2111, 20syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → 𝑌 <s 𝑍)
22 simpr 484 . . . . 5 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → ( bday 𝑌) ∈ ( bday 𝑍))
2313, 15, 17, 19, 21, 22addsproplem4 27902 . . . 4 ((𝜑 ∧ ( bday 𝑌) ∈ ( bday 𝑍)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
2423ex 412 . . 3 (𝜑 → (( bday 𝑌) ∈ ( bday 𝑍) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
25 simpl 482 . . . . . 6 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝜑)
2625, 12syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2725, 14syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑋 No )
2825, 16syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑌 No )
2925, 18syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑍 No )
3025, 20syl 17 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → 𝑌 <s 𝑍)
31 simpr 484 . . . . 5 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → ( bday 𝑌) = ( bday 𝑍))
3226, 27, 28, 29, 30, 31addsproplem6 27904 . . . 4 ((𝜑 ∧ ( bday 𝑌) = ( bday 𝑍)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
3332ex 412 . . 3 (𝜑 → (( bday 𝑌) = ( bday 𝑍) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
3412adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
3514adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑋 No )
3616adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑌 No )
3718adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑍 No )
3820adantr 480 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → 𝑌 <s 𝑍)
39 simpr 484 . . . . 5 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → ( bday 𝑍) ∈ ( bday 𝑌))
4034, 35, 36, 37, 38, 39addsproplem5 27903 . . . 4 ((𝜑 ∧ ( bday 𝑍) ∈ ( bday 𝑌)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
4140ex 412 . . 3 (𝜑 → (( bday 𝑍) ∈ ( bday 𝑌) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
4224, 33, 413jaod 1431 . 2 (𝜑 → ((( bday 𝑌) ∈ ( bday 𝑍) ∨ ( bday 𝑌) = ( bday 𝑍) ∨ ( bday 𝑍) ∈ ( bday 𝑌)) → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))
4310, 42mpi 20 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044  cun 3903   class class class wbr 5095  Ord word 6310  Oncon0 6311  cfv 6486  (class class class)co 7353   +no cnadd 8590   No csur 27567   <s cslt 27568   bday cbday 27569   +s cadds 27889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-adds 27890
This theorem is referenced by:  addsprop  27906
  Copyright terms: Public domain W3C validator