MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Structured version   Visualization version   GIF version

Theorem isfinite2 9002
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2 (𝐴 ≺ ω → 𝐴 ∈ Fin)

Proof of Theorem isfinite2
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8698 . . 3 Rel ≺
21brrelex2i 5635 . 2 (𝐴 ≺ ω → ω ∈ V)
3 sdomdom 8723 . . . 4 (𝐴 ≺ ω → 𝐴 ≼ ω)
4 domeng 8707 . . . 4 (ω ∈ V → (𝐴 ≼ ω ↔ ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
53, 4syl5ib 243 . . 3 (ω ∈ V → (𝐴 ≺ ω → ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
6 ensym 8744 . . . . . . . . . . 11 (𝐴𝑦𝑦𝐴)
76ad2antrl 724 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦𝐴)
8 simpl 482 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ≺ ω)
9 ensdomtr 8849 . . . . . . . . . 10 ((𝑦𝐴𝐴 ≺ ω) → 𝑦 ≺ ω)
107, 8, 9syl2anc 583 . . . . . . . . 9 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ≺ ω)
11 sdomnen 8724 . . . . . . . . 9 (𝑦 ≺ ω → ¬ 𝑦 ≈ ω)
1210, 11syl 17 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ 𝑦 ≈ ω)
13 simpr 484 . . . . . . . . 9 ((𝐴𝑦𝑦 ⊆ ω) → 𝑦 ⊆ ω)
14 unbnn 9000 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤) → 𝑦 ≈ ω)
15143expia 1119 . . . . . . . . 9 ((ω ∈ V ∧ 𝑦 ⊆ ω) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
162, 13, 15syl2an 595 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
1712, 16mtod 197 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
18 rexnal 3165 . . . . . . . . 9 (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤 ↔ ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
19 omsson 7691 . . . . . . . . . . . . 13 ω ⊆ On
20 sstr 3925 . . . . . . . . . . . . 13 ((𝑦 ⊆ ω ∧ ω ⊆ On) → 𝑦 ⊆ On)
2119, 20mpan2 687 . . . . . . . . . . . 12 (𝑦 ⊆ ω → 𝑦 ⊆ On)
22 nnord 7695 . . . . . . . . . . . 12 (𝑧 ∈ ω → Ord 𝑧)
23 ssel2 3912 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑤𝑦) → 𝑤 ∈ On)
24 vex 3426 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
2524elon 6260 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ On ↔ Ord 𝑤)
2623, 25sylib 217 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑤𝑦) → Ord 𝑤)
27 ordtri1 6284 . . . . . . . . . . . . . . . . 17 ((Ord 𝑤 ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2826, 27sylan 579 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ On ∧ 𝑤𝑦) ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2928an32s 648 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ Ord 𝑧) ∧ 𝑤𝑦) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
3029ralbidva 3119 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ Ord 𝑧) → (∀𝑤𝑦 𝑤𝑧 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤))
31 unissb 4870 . . . . . . . . . . . . . 14 ( 𝑦𝑧 ↔ ∀𝑤𝑦 𝑤𝑧)
32 ralnex 3163 . . . . . . . . . . . . . . 15 (∀𝑤𝑦 ¬ 𝑧𝑤 ↔ ¬ ∃𝑤𝑦 𝑧𝑤)
3332bicomi 223 . . . . . . . . . . . . . 14 (¬ ∃𝑤𝑦 𝑧𝑤 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤)
3430, 31, 333bitr4g 313 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧 ↔ ¬ ∃𝑤𝑦 𝑧𝑤))
35 ordunisssuc 6353 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧𝑦 ⊆ suc 𝑧))
3634, 35bitr3d 280 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ Ord 𝑧) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
3721, 22, 36syl2an 595 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
38 peano2b 7704 . . . . . . . . . . . . . 14 (𝑧 ∈ ω ↔ suc 𝑧 ∈ ω)
39 ssnnfi 8914 . . . . . . . . . . . . . 14 ((suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4038, 39sylanb 580 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4140ex 412 . . . . . . . . . . . 12 (𝑧 ∈ ω → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4241adantl 481 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4337, 42sylbid 239 . . . . . . . . . 10 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4443rexlimdva 3212 . . . . . . . . 9 (𝑦 ⊆ ω → (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4518, 44syl5bir 242 . . . . . . . 8 (𝑦 ⊆ ω → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4645ad2antll 725 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4717, 46mpd 15 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ∈ Fin)
48 simprl 767 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴𝑦)
49 enfii 8932 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝐴𝑦) → 𝐴 ∈ Fin)
5047, 48, 49syl2anc 583 . . . . 5 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ∈ Fin)
5150ex 412 . . . 4 (𝐴 ≺ ω → ((𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
5251exlimdv 1937 . . 3 (𝐴 ≺ ω → (∃𝑦(𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
535, 52sylcom 30 . 2 (ω ∈ V → (𝐴 ≺ ω → 𝐴 ∈ Fin))
542, 53mpcom 38 1 (𝐴 ≺ ω → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   cuni 4836   class class class wbr 5070  Ord word 6250  Oncon0 6251  suc csuc 6253  ωcom 7687  cen 8688  cdom 8689  csdm 8690  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695
This theorem is referenced by:  isfiniteg  9004  unfi2  9013  unifi2  9039  axcclem  10144  dirith2  26581  padct  30956  volmeas  32099  axccdom  42651  axccd2  42658
  Copyright terms: Public domain W3C validator