MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Structured version   Visualization version   GIF version

Theorem isfinite2 9306
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2 (𝐴 ≺ ω → 𝐴 ∈ Fin)

Proof of Theorem isfinite2
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8966 . . 3 Rel ≺
21brrelex2i 5711 . 2 (𝐴 ≺ ω → ω ∈ V)
3 sdomdom 8994 . . . 4 (𝐴 ≺ ω → 𝐴 ≼ ω)
4 domeng 8977 . . . 4 (ω ∈ V → (𝐴 ≼ ω ↔ ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
53, 4imbitrid 244 . . 3 (ω ∈ V → (𝐴 ≺ ω → ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
6 ensym 9017 . . . . . . . . . . 11 (𝐴𝑦𝑦𝐴)
76ad2antrl 728 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦𝐴)
8 simpl 482 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ≺ ω)
9 ensdomtr 9127 . . . . . . . . . 10 ((𝑦𝐴𝐴 ≺ ω) → 𝑦 ≺ ω)
107, 8, 9syl2anc 584 . . . . . . . . 9 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ≺ ω)
11 sdomnen 8995 . . . . . . . . 9 (𝑦 ≺ ω → ¬ 𝑦 ≈ ω)
1210, 11syl 17 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ 𝑦 ≈ ω)
13 simpr 484 . . . . . . . . 9 ((𝐴𝑦𝑦 ⊆ ω) → 𝑦 ⊆ ω)
14 unbnn 9304 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤) → 𝑦 ≈ ω)
15143expia 1121 . . . . . . . . 9 ((ω ∈ V ∧ 𝑦 ⊆ ω) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
162, 13, 15syl2an 596 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
1712, 16mtod 198 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
18 rexnal 3089 . . . . . . . . 9 (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤 ↔ ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
19 omsson 7865 . . . . . . . . . . . . 13 ω ⊆ On
20 sstr 3967 . . . . . . . . . . . . 13 ((𝑦 ⊆ ω ∧ ω ⊆ On) → 𝑦 ⊆ On)
2119, 20mpan2 691 . . . . . . . . . . . 12 (𝑦 ⊆ ω → 𝑦 ⊆ On)
22 nnord 7869 . . . . . . . . . . . 12 (𝑧 ∈ ω → Ord 𝑧)
23 ssel2 3953 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑤𝑦) → 𝑤 ∈ On)
24 vex 3463 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
2524elon 6361 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ On ↔ Ord 𝑤)
2623, 25sylib 218 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑤𝑦) → Ord 𝑤)
27 ordtri1 6385 . . . . . . . . . . . . . . . . 17 ((Ord 𝑤 ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2826, 27sylan 580 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ On ∧ 𝑤𝑦) ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2928an32s 652 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ Ord 𝑧) ∧ 𝑤𝑦) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
3029ralbidva 3161 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ Ord 𝑧) → (∀𝑤𝑦 𝑤𝑧 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤))
31 unissb 4915 . . . . . . . . . . . . . 14 ( 𝑦𝑧 ↔ ∀𝑤𝑦 𝑤𝑧)
32 ralnex 3062 . . . . . . . . . . . . . . 15 (∀𝑤𝑦 ¬ 𝑧𝑤 ↔ ¬ ∃𝑤𝑦 𝑧𝑤)
3332bicomi 224 . . . . . . . . . . . . . 14 (¬ ∃𝑤𝑦 𝑧𝑤 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤)
3430, 31, 333bitr4g 314 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧 ↔ ¬ ∃𝑤𝑦 𝑧𝑤))
35 ordunisssuc 6460 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧𝑦 ⊆ suc 𝑧))
3634, 35bitr3d 281 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ Ord 𝑧) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
3721, 22, 36syl2an 596 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
38 peano2b 7878 . . . . . . . . . . . . . 14 (𝑧 ∈ ω ↔ suc 𝑧 ∈ ω)
39 ssnnfi 9183 . . . . . . . . . . . . . 14 ((suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4038, 39sylanb 581 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4140ex 412 . . . . . . . . . . . 12 (𝑧 ∈ ω → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4241adantl 481 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4337, 42sylbid 240 . . . . . . . . . 10 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4443rexlimdva 3141 . . . . . . . . 9 (𝑦 ⊆ ω → (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4518, 44biimtrrid 243 . . . . . . . 8 (𝑦 ⊆ ω → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4645ad2antll 729 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4717, 46mpd 15 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ∈ Fin)
48 simprl 770 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴𝑦)
49 enfii 9200 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝐴𝑦) → 𝐴 ∈ Fin)
5047, 48, 49syl2anc 584 . . . . 5 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ∈ Fin)
5150ex 412 . . . 4 (𝐴 ≺ ω → ((𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
5251exlimdv 1933 . . 3 (𝐴 ≺ ω → (∃𝑦(𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
535, 52sylcom 30 . 2 (ω ∈ V → (𝐴 ≺ ω → 𝐴 ∈ Fin))
542, 53mpcom 38 1 (𝐴 ≺ ω → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1779  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926   cuni 4883   class class class wbr 5119  Ord word 6351  Oncon0 6352  suc csuc 6354  ωcom 7861  cen 8956  cdom 8957  csdm 8958  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963
This theorem is referenced by:  isfiniteg  9309  unfi2  9320  unifi2  9357  axcclem  10471  dirith2  27491  padct  32697  volmeas  34262  axccdom  45246  axccd2  45254
  Copyright terms: Public domain W3C validator