MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Structured version   Visualization version   GIF version

Theorem isfinite2 8457
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2 (𝐴 ≺ ω → 𝐴 ∈ Fin)

Proof of Theorem isfinite2
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8199 . . 3 Rel ≺
21brrelex2i 5359 . 2 (𝐴 ≺ ω → ω ∈ V)
3 sdomdom 8220 . . . 4 (𝐴 ≺ ω → 𝐴 ≼ ω)
4 domeng 8206 . . . 4 (ω ∈ V → (𝐴 ≼ ω ↔ ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
53, 4syl5ib 235 . . 3 (ω ∈ V → (𝐴 ≺ ω → ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
6 ensym 8241 . . . . . . . . . . 11 (𝐴𝑦𝑦𝐴)
76ad2antrl 710 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦𝐴)
8 simpl 470 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ≺ ω)
9 ensdomtr 8335 . . . . . . . . . 10 ((𝑦𝐴𝐴 ≺ ω) → 𝑦 ≺ ω)
107, 8, 9syl2anc 575 . . . . . . . . 9 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ≺ ω)
11 sdomnen 8221 . . . . . . . . 9 (𝑦 ≺ ω → ¬ 𝑦 ≈ ω)
1210, 11syl 17 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ 𝑦 ≈ ω)
13 simpr 473 . . . . . . . . 9 ((𝐴𝑦𝑦 ⊆ ω) → 𝑦 ⊆ ω)
14 unbnn 8455 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤) → 𝑦 ≈ ω)
15143expia 1143 . . . . . . . . 9 ((ω ∈ V ∧ 𝑦 ⊆ ω) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
162, 13, 15syl2an 585 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
1712, 16mtod 189 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
18 rexnal 3182 . . . . . . . . 9 (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤 ↔ ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
19 omsson 7299 . . . . . . . . . . . . 13 ω ⊆ On
20 sstr 3806 . . . . . . . . . . . . 13 ((𝑦 ⊆ ω ∧ ω ⊆ On) → 𝑦 ⊆ On)
2119, 20mpan2 674 . . . . . . . . . . . 12 (𝑦 ⊆ ω → 𝑦 ⊆ On)
22 nnord 7303 . . . . . . . . . . . 12 (𝑧 ∈ ω → Ord 𝑧)
23 ssel2 3793 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑤𝑦) → 𝑤 ∈ On)
24 vex 3394 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
2524elon 5945 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ On ↔ Ord 𝑤)
2623, 25sylib 209 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑤𝑦) → Ord 𝑤)
27 ordtri1 5969 . . . . . . . . . . . . . . . . 17 ((Ord 𝑤 ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2826, 27sylan 571 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ On ∧ 𝑤𝑦) ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2928an32s 634 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ Ord 𝑧) ∧ 𝑤𝑦) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
3029ralbidva 3173 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ Ord 𝑧) → (∀𝑤𝑦 𝑤𝑧 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤))
31 unissb 4663 . . . . . . . . . . . . . 14 ( 𝑦𝑧 ↔ ∀𝑤𝑦 𝑤𝑧)
32 ralnex 3180 . . . . . . . . . . . . . . 15 (∀𝑤𝑦 ¬ 𝑧𝑤 ↔ ¬ ∃𝑤𝑦 𝑧𝑤)
3332bicomi 215 . . . . . . . . . . . . . 14 (¬ ∃𝑤𝑦 𝑧𝑤 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤)
3430, 31, 333bitr4g 305 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧 ↔ ¬ ∃𝑤𝑦 𝑧𝑤))
35 ordunisssuc 6043 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧𝑦 ⊆ suc 𝑧))
3634, 35bitr3d 272 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ Ord 𝑧) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
3721, 22, 36syl2an 585 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
38 peano2b 7311 . . . . . . . . . . . . . 14 (𝑧 ∈ ω ↔ suc 𝑧 ∈ ω)
39 ssnnfi 8418 . . . . . . . . . . . . . 14 ((suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4038, 39sylanb 572 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4140ex 399 . . . . . . . . . . . 12 (𝑧 ∈ ω → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4241adantl 469 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4337, 42sylbid 231 . . . . . . . . . 10 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4443rexlimdva 3219 . . . . . . . . 9 (𝑦 ⊆ ω → (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4518, 44syl5bir 234 . . . . . . . 8 (𝑦 ⊆ ω → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4645ad2antll 711 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4717, 46mpd 15 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ∈ Fin)
48 simprl 778 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴𝑦)
49 enfii 8416 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝐴𝑦) → 𝐴 ∈ Fin)
5047, 48, 49syl2anc 575 . . . . 5 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ∈ Fin)
5150ex 399 . . . 4 (𝐴 ≺ ω → ((𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
5251exlimdv 2024 . . 3 (𝐴 ≺ ω → (∃𝑦(𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
535, 52sylcom 30 . 2 (ω ∈ V → (𝐴 ≺ ω → 𝐴 ∈ Fin))
542, 53mpcom 38 1 (𝐴 ≺ ω → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wex 1859  wcel 2156  wral 3096  wrex 3097  Vcvv 3391  wss 3769   cuni 4630   class class class wbr 4844  Ord word 5935  Oncon0 5936  suc csuc 5938  ωcom 7295  cen 8189  cdom 8190  csdm 8191  Fincfn 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-om 7296  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196
This theorem is referenced by:  isfiniteg  8459  unfi2  8468  unifi2  8495  axcclem  9564  dirith2  25431  padct  29824  volmeas  30619  axccdom  39903  axccd2  39914
  Copyright terms: Public domain W3C validator