Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Structured version   Visualization version   GIF version

Theorem isfinite2 8760
 Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2 (𝐴 ≺ ω → 𝐴 ∈ Fin)

Proof of Theorem isfinite2
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8499 . . 3 Rel ≺
21brrelex2i 5573 . 2 (𝐴 ≺ ω → ω ∈ V)
3 sdomdom 8520 . . . 4 (𝐴 ≺ ω → 𝐴 ≼ ω)
4 domeng 8506 . . . 4 (ω ∈ V → (𝐴 ≼ ω ↔ ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
53, 4syl5ib 247 . . 3 (ω ∈ V → (𝐴 ≺ ω → ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
6 ensym 8541 . . . . . . . . . . 11 (𝐴𝑦𝑦𝐴)
76ad2antrl 727 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦𝐴)
8 simpl 486 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ≺ ω)
9 ensdomtr 8637 . . . . . . . . . 10 ((𝑦𝐴𝐴 ≺ ω) → 𝑦 ≺ ω)
107, 8, 9syl2anc 587 . . . . . . . . 9 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ≺ ω)
11 sdomnen 8521 . . . . . . . . 9 (𝑦 ≺ ω → ¬ 𝑦 ≈ ω)
1210, 11syl 17 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ 𝑦 ≈ ω)
13 simpr 488 . . . . . . . . 9 ((𝐴𝑦𝑦 ⊆ ω) → 𝑦 ⊆ ω)
14 unbnn 8758 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤) → 𝑦 ≈ ω)
15143expia 1118 . . . . . . . . 9 ((ω ∈ V ∧ 𝑦 ⊆ ω) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
162, 13, 15syl2an 598 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
1712, 16mtod 201 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
18 rexnal 3201 . . . . . . . . 9 (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤 ↔ ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
19 omsson 7564 . . . . . . . . . . . . 13 ω ⊆ On
20 sstr 3923 . . . . . . . . . . . . 13 ((𝑦 ⊆ ω ∧ ω ⊆ On) → 𝑦 ⊆ On)
2119, 20mpan2 690 . . . . . . . . . . . 12 (𝑦 ⊆ ω → 𝑦 ⊆ On)
22 nnord 7568 . . . . . . . . . . . 12 (𝑧 ∈ ω → Ord 𝑧)
23 ssel2 3910 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑤𝑦) → 𝑤 ∈ On)
24 vex 3444 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
2524elon 6168 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ On ↔ Ord 𝑤)
2623, 25sylib 221 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑤𝑦) → Ord 𝑤)
27 ordtri1 6192 . . . . . . . . . . . . . . . . 17 ((Ord 𝑤 ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2826, 27sylan 583 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ On ∧ 𝑤𝑦) ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2928an32s 651 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ Ord 𝑧) ∧ 𝑤𝑦) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
3029ralbidva 3161 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ Ord 𝑧) → (∀𝑤𝑦 𝑤𝑧 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤))
31 unissb 4832 . . . . . . . . . . . . . 14 ( 𝑦𝑧 ↔ ∀𝑤𝑦 𝑤𝑧)
32 ralnex 3199 . . . . . . . . . . . . . . 15 (∀𝑤𝑦 ¬ 𝑧𝑤 ↔ ¬ ∃𝑤𝑦 𝑧𝑤)
3332bicomi 227 . . . . . . . . . . . . . 14 (¬ ∃𝑤𝑦 𝑧𝑤 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤)
3430, 31, 333bitr4g 317 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧 ↔ ¬ ∃𝑤𝑦 𝑧𝑤))
35 ordunisssuc 6261 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧𝑦 ⊆ suc 𝑧))
3634, 35bitr3d 284 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ Ord 𝑧) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
3721, 22, 36syl2an 598 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
38 peano2b 7576 . . . . . . . . . . . . . 14 (𝑧 ∈ ω ↔ suc 𝑧 ∈ ω)
39 ssnnfi 8721 . . . . . . . . . . . . . 14 ((suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4038, 39sylanb 584 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4140ex 416 . . . . . . . . . . . 12 (𝑧 ∈ ω → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4241adantl 485 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4337, 42sylbid 243 . . . . . . . . . 10 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4443rexlimdva 3243 . . . . . . . . 9 (𝑦 ⊆ ω → (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4518, 44syl5bir 246 . . . . . . . 8 (𝑦 ⊆ ω → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4645ad2antll 728 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4717, 46mpd 15 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ∈ Fin)
48 simprl 770 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴𝑦)
49 enfii 8719 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝐴𝑦) → 𝐴 ∈ Fin)
5047, 48, 49syl2anc 587 . . . . 5 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ∈ Fin)
5150ex 416 . . . 4 (𝐴 ≺ ω → ((𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
5251exlimdv 1934 . . 3 (𝐴 ≺ ω → (∃𝑦(𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
535, 52sylcom 30 . 2 (ω ∈ V → (𝐴 ≺ ω → 𝐴 ∈ Fin))
542, 53mpcom 38 1 (𝐴 ≺ ω → 𝐴 ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∃wex 1781   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881  ∪ cuni 4800   class class class wbr 5030  Ord word 6158  Oncon0 6159  suc csuc 6161  ωcom 7560   ≈ cen 8489   ≼ cdom 8490   ≺ csdm 8491  Fincfn 8492 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496 This theorem is referenced by:  isfiniteg  8762  unfi2  8771  unifi2  8798  axcclem  9868  dirith2  26112  padct  30481  volmeas  31600  axccdom  41851  axccd2  41860
 Copyright terms: Public domain W3C validator