MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon2 Structured version   Visualization version   GIF version

Theorem elon2 6312
Description: An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))

Proof of Theorem elon2
StepHypRef Expression
1 elex 3457 . . 3 (𝐴 ∈ On → 𝐴 ∈ V)
2 elong 6309 . . 3 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2biadanii 821 . 2 (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴))
43biancomi 462 1 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  Vcvv 3436  Ord word 6300  Oncon0 6301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3914  df-uni 4855  df-tr 5194  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305
This theorem is referenced by:  ordsuci  7736  onsucb  7742  tfrlem12  8303  tfrlem13  8304  gruina  10704  bdayimaon  27627  noeta2  27719  etasslt2  27750  oldlim  27827  bdayon  28204  oaltublim  43323  omord2lim  43333  oaun3lem3  43409  nadd2rabon  43420  nadd1rabon  43424
  Copyright terms: Public domain W3C validator