| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elon2 | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.) |
| Ref | Expression |
|---|---|
| elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
| 2 | elong 6309 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | biadanii 821 | . 2 ⊢ (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴)) |
| 4 | 3 | biancomi 462 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 Ord word 6300 Oncon0 6301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-uni 4855 df-tr 5194 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 |
| This theorem is referenced by: ordsuci 7736 onsucb 7742 tfrlem12 8303 tfrlem13 8304 gruina 10704 bdayimaon 27627 noeta2 27719 etasslt2 27750 oldlim 27827 bdayon 28204 oaltublim 43323 omord2lim 43333 oaun3lem3 43409 nadd2rabon 43420 nadd1rabon 43424 |
| Copyright terms: Public domain | W3C validator |