| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elon2 | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.) |
| Ref | Expression |
|---|---|
| elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
| 2 | elong 6322 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | biadanii 821 | . 2 ⊢ (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴)) |
| 4 | 3 | biancomi 462 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 Ord word 6313 Oncon0 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-uni 4861 df-tr 5203 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 |
| This theorem is referenced by: ordsuci 7750 onsucb 7756 tfrlem12 8317 tfrlem13 8318 gruina 10720 bdayimaon 27652 noeta2 27744 etasslt2 27775 oldlim 27852 bdayon 28229 oaltublim 43447 omord2lim 43457 oaun3lem3 43533 nadd2rabon 43544 nadd1rabon 43548 |
| Copyright terms: Public domain | W3C validator |