MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon2 Structured version   Visualization version   GIF version

Theorem elon2 5987
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))

Proof of Theorem elon2
StepHypRef Expression
1 elex 3413 . . 3 (𝐴 ∈ On → 𝐴 ∈ V)
2 elong 5984 . . 3 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2biadanii 813 . 2 (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴))
43biancomi 456 1 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wcel 2106  Vcvv 3397  Ord word 5975  Oncon0 5976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-v 3399  df-in 3798  df-ss 3805  df-uni 4672  df-tr 4988  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-ord 5979  df-on 5980
This theorem is referenced by:  sucelon  7295  tfrlem12  7768  tfrlem13  7769  gruina  9975  bdayimaon  32432
  Copyright terms: Public domain W3C validator