| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elon2 | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.) |
| Ref | Expression |
|---|---|
| elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
| 2 | elong 6343 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 3 | 1, 2 | biadanii 821 | . 2 ⊢ (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴)) |
| 4 | 3 | biancomi 462 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: ordsuci 7787 onsucb 7795 tfrlem12 8360 tfrlem13 8361 gruina 10778 bdayimaon 27612 noeta2 27703 etasslt2 27733 oldlim 27805 bdayon 28180 oaltublim 43286 omord2lim 43296 oaun3lem3 43372 nadd2rabon 43383 nadd1rabon 43387 |
| Copyright terms: Public domain | W3C validator |