![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elon2 | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
Ref | Expression |
---|---|
elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3413 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
2 | elong 5984 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | biadanii 813 | . 2 ⊢ (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴)) |
4 | 3 | biancomi 456 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∈ wcel 2106 Vcvv 3397 Ord word 5975 Oncon0 5976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-v 3399 df-in 3798 df-ss 3805 df-uni 4672 df-tr 4988 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-ord 5979 df-on 5980 |
This theorem is referenced by: sucelon 7295 tfrlem12 7768 tfrlem13 7769 gruina 9975 bdayimaon 32432 |
Copyright terms: Public domain | W3C validator |