MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon2 Structured version   Visualization version   GIF version

Theorem elon2 6325
Description: An ordinal number is an ordinal set. Part of Definition 1.2 of [Schloeder] p. 1. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))

Proof of Theorem elon2
StepHypRef Expression
1 elex 3458 . . 3 (𝐴 ∈ On → 𝐴 ∈ V)
2 elong 6322 . . 3 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2biadanii 821 . 2 (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴))
43biancomi 462 1 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113  Vcvv 3437  Ord word 6313  Oncon0 6314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-ss 3915  df-uni 4861  df-tr 5203  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318
This theorem is referenced by:  ordsuci  7750  onsucb  7756  tfrlem12  8317  tfrlem13  8318  gruina  10720  bdayimaon  27652  noeta2  27744  etasslt2  27775  oldlim  27852  bdayon  28229  oaltublim  43447  omord2lim  43457  oaun3lem3  43533  nadd2rabon  43544  nadd1rabon  43548
  Copyright terms: Public domain W3C validator