Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etasslt2 | Structured version Visualization version GIF version |
Description: A version of etasslt 33934 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
Ref | Expression |
---|---|
etasslt2 | ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfun 33894 | . . . . . 6 ⊢ Fun bday | |
2 | ssltex1 33908 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
3 | ssltex2 33909 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
4 | unexg 7577 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | syl2anc 583 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∪ 𝐵) ∈ V) |
6 | funimaexg 6504 | . . . . . 6 ⊢ ((Fun bday ∧ (𝐴 ∪ 𝐵) ∈ V) → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) | |
7 | 1, 5, 6 | sylancr 586 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
8 | 7 | uniexd 7573 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
9 | imassrn 5969 | . . . . . . 7 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ ran bday | |
10 | bdayrn 33897 | . . . . . . 7 ⊢ ran bday = On | |
11 | 9, 10 | sseqtri 3953 | . . . . . 6 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ On |
12 | ssorduni 7606 | . . . . . 6 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → Ord ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) |
14 | elon2 6262 | . . . . 5 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ (Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) ∧ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V)) | |
15 | 13, 14 | mpbiran 705 | . . . 4 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
16 | 8, 15 | sylibr 233 | . . 3 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
17 | sucelon 7639 | . . 3 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ (𝐴 <<s 𝐵 → suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
19 | onsucuni 7650 | . . 3 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
20 | 11, 19 | mp1i 13 | . 2 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
21 | etasslt 33934 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | |
22 | 18, 20, 21 | mpd3an23 1461 | 1 ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 class class class wbr 5070 ran crn 5581 “ cima 5583 Ord word 6250 Oncon0 6251 suc csuc 6253 Fun wfun 6412 ‘cfv 6418 No csur 33770 bday cbday 33772 <<s csslt 33902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 |
This theorem is referenced by: scutbdaybnd2 33937 |
Copyright terms: Public domain | W3C validator |