| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > etasslt2 | Structured version Visualization version GIF version | ||
| Description: A version of etasslt 27754 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
| Ref | Expression |
|---|---|
| etasslt2 | ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfun 27711 | . . . . . 6 ⊢ Fun bday | |
| 2 | ssltex1 27726 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
| 3 | ssltex2 27727 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
| 4 | unexg 7676 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∪ 𝐵) ∈ V) |
| 6 | funimaexg 6568 | . . . . . 6 ⊢ ((Fun bday ∧ (𝐴 ∪ 𝐵) ∈ V) → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 8 | 7 | uniexd 7675 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 9 | imassrn 6019 | . . . . . . 7 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ ran bday | |
| 10 | bdayrn 27714 | . . . . . . 7 ⊢ ran bday = On | |
| 11 | 9, 10 | sseqtri 3978 | . . . . . 6 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ On |
| 12 | ssorduni 7712 | . . . . . 6 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → Ord ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) |
| 14 | elon2 6317 | . . . . 5 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ (Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) ∧ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V)) | |
| 15 | 13, 14 | mpbiran 709 | . . . 4 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 16 | 8, 15 | sylibr 234 | . . 3 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
| 17 | onsucb 7747 | . . 3 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) | |
| 18 | 16, 17 | sylib 218 | . 2 ⊢ (𝐴 <<s 𝐵 → suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
| 19 | onsucuni 7758 | . . 3 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
| 20 | 11, 19 | mp1i 13 | . 2 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 21 | etasslt 27754 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | |
| 22 | 18, 20, 21 | mpd3an23 1465 | 1 ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 {csn 4573 ∪ cuni 4856 class class class wbr 5089 ran crn 5615 “ cima 5617 Ord word 6305 Oncon0 6306 suc csuc 6308 Fun wfun 6475 ‘cfv 6481 No csur 27578 bday cbday 27580 <<s csslt 27720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 |
| This theorem is referenced by: scutbdaybnd2 27757 |
| Copyright terms: Public domain | W3C validator |