MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  etasslt2 Structured version   Visualization version   GIF version

Theorem etasslt2 27778
Description: A version of etasslt 27777 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
etasslt2 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem etasslt2
StepHypRef Expression
1 bdayfun 27736 . . . . . 6 Fun bday
2 ssltex1 27750 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltex2 27751 . . . . . . 7 (𝐴 <<s 𝐵𝐵 ∈ V)
4 unexg 7737 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
52, 3, 4syl2anc 584 . . . . . 6 (𝐴 <<s 𝐵 → (𝐴𝐵) ∈ V)
6 funimaexg 6623 . . . . . 6 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
71, 5, 6sylancr 587 . . . . 5 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ∈ V)
87uniexd 7736 . . . 4 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ V)
9 imassrn 6058 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
10 bdayrn 27739 . . . . . . 7 ran bday = On
119, 10sseqtri 4007 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
12 ssorduni 7773 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
1311, 12ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
14 elon2 6363 . . . . 5 ( ( bday “ (𝐴𝐵)) ∈ On ↔ (Ord ( bday “ (𝐴𝐵)) ∧ ( bday “ (𝐴𝐵)) ∈ V))
1513, 14mpbiran 709 . . . 4 ( ( bday “ (𝐴𝐵)) ∈ On ↔ ( bday “ (𝐴𝐵)) ∈ V)
168, 15sylibr 234 . . 3 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ On)
17 onsucb 7811 . . 3 ( ( bday “ (𝐴𝐵)) ∈ On ↔ suc ( bday “ (𝐴𝐵)) ∈ On)
1816, 17sylib 218 . 2 (𝐴 <<s 𝐵 → suc ( bday “ (𝐴𝐵)) ∈ On)
19 onsucuni 7822 . . 3 (( bday “ (𝐴𝐵)) ⊆ On → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
2011, 19mp1i 13 . 2 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
21 etasslt 27777 . 2 ((𝐴 <<s 𝐵 ∧ suc ( bday “ (𝐴𝐵)) ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵))) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
2218, 20, 21mpd3an23 1465 1 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2108  wrex 3060  Vcvv 3459  cun 3924  wss 3926  {csn 4601   cuni 4883   class class class wbr 5119  ran crn 5655  cima 5657  Ord word 6351  Oncon0 6352  suc csuc 6354  Fun wfun 6525  cfv 6531   No csur 27603   bday cbday 27605   <<s csslt 27744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745
This theorem is referenced by:  scutbdaybnd2  27780
  Copyright terms: Public domain W3C validator