Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etasslt2 Structured version   Visualization version   GIF version

Theorem etasslt2 33935
Description: A version of etasslt 33934 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
etasslt2 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem etasslt2
StepHypRef Expression
1 bdayfun 33894 . . . . . 6 Fun bday
2 ssltex1 33908 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltex2 33909 . . . . . . 7 (𝐴 <<s 𝐵𝐵 ∈ V)
4 unexg 7577 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
52, 3, 4syl2anc 583 . . . . . 6 (𝐴 <<s 𝐵 → (𝐴𝐵) ∈ V)
6 funimaexg 6504 . . . . . 6 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
71, 5, 6sylancr 586 . . . . 5 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ∈ V)
87uniexd 7573 . . . 4 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ V)
9 imassrn 5969 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
10 bdayrn 33897 . . . . . . 7 ran bday = On
119, 10sseqtri 3953 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
12 ssorduni 7606 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
1311, 12ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
14 elon2 6262 . . . . 5 ( ( bday “ (𝐴𝐵)) ∈ On ↔ (Ord ( bday “ (𝐴𝐵)) ∧ ( bday “ (𝐴𝐵)) ∈ V))
1513, 14mpbiran 705 . . . 4 ( ( bday “ (𝐴𝐵)) ∈ On ↔ ( bday “ (𝐴𝐵)) ∈ V)
168, 15sylibr 233 . . 3 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ On)
17 sucelon 7639 . . 3 ( ( bday “ (𝐴𝐵)) ∈ On ↔ suc ( bday “ (𝐴𝐵)) ∈ On)
1816, 17sylib 217 . 2 (𝐴 <<s 𝐵 → suc ( bday “ (𝐴𝐵)) ∈ On)
19 onsucuni 7650 . . 3 (( bday “ (𝐴𝐵)) ⊆ On → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
2011, 19mp1i 13 . 2 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
21 etasslt 33934 . 2 ((𝐴 <<s 𝐵 ∧ suc ( bday “ (𝐴𝐵)) ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵))) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
2218, 20, 21mpd3an23 1461 1 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2108  wrex 3064  Vcvv 3422  cun 3881  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  ran crn 5581  cima 5583  Ord word 6250  Oncon0 6251  suc csuc 6253  Fun wfun 6412  cfv 6418   No csur 33770   bday cbday 33772   <<s csslt 33902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903
This theorem is referenced by:  scutbdaybnd2  33937
  Copyright terms: Public domain W3C validator