| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > etasslt2 | Structured version Visualization version GIF version | ||
| Description: A version of etasslt 27732 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
| Ref | Expression |
|---|---|
| etasslt2 | ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfun 27691 | . . . . . 6 ⊢ Fun bday | |
| 2 | ssltex1 27705 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
| 3 | ssltex2 27706 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
| 4 | unexg 7722 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∪ 𝐵) ∈ V) |
| 6 | funimaexg 6606 | . . . . . 6 ⊢ ((Fun bday ∧ (𝐴 ∪ 𝐵) ∈ V) → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 8 | 7 | uniexd 7721 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 9 | imassrn 6045 | . . . . . . 7 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ ran bday | |
| 10 | bdayrn 27694 | . . . . . . 7 ⊢ ran bday = On | |
| 11 | 9, 10 | sseqtri 3998 | . . . . . 6 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ On |
| 12 | ssorduni 7758 | . . . . . 6 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → Ord ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) |
| 14 | elon2 6346 | . . . . 5 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ (Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) ∧ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V)) | |
| 15 | 13, 14 | mpbiran 709 | . . . 4 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 16 | 8, 15 | sylibr 234 | . . 3 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
| 17 | onsucb 7795 | . . 3 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) | |
| 18 | 16, 17 | sylib 218 | . 2 ⊢ (𝐴 <<s 𝐵 → suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
| 19 | onsucuni 7806 | . . 3 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
| 20 | 11, 19 | mp1i 13 | . 2 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 21 | etasslt 27732 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | |
| 22 | 18, 20, 21 | mpd3an23 1465 | 1 ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 {csn 4592 ∪ cuni 4874 class class class wbr 5110 ran crn 5642 “ cima 5644 Ord word 6334 Oncon0 6335 suc csuc 6337 Fun wfun 6508 ‘cfv 6514 No csur 27558 bday cbday 27560 <<s csslt 27699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 |
| This theorem is referenced by: scutbdaybnd2 27735 |
| Copyright terms: Public domain | W3C validator |