![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > etasslt2 | Structured version Visualization version GIF version |
Description: A version of etasslt 27322 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
Ref | Expression |
---|---|
etasslt2 | ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfun 27281 | . . . . . 6 ⊢ Fun bday | |
2 | ssltex1 27295 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
3 | ssltex2 27296 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
4 | unexg 7738 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∪ 𝐵) ∈ V) |
6 | funimaexg 6634 | . . . . . 6 ⊢ ((Fun bday ∧ (𝐴 ∪ 𝐵) ∈ V) → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
8 | 7 | uniexd 7734 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
9 | imassrn 6070 | . . . . . . 7 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ ran bday | |
10 | bdayrn 27284 | . . . . . . 7 ⊢ ran bday = On | |
11 | 9, 10 | sseqtri 4018 | . . . . . 6 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ On |
12 | ssorduni 7768 | . . . . . 6 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → Ord ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) |
14 | elon2 6375 | . . . . 5 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ (Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) ∧ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V)) | |
15 | 13, 14 | mpbiran 707 | . . . 4 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
16 | 8, 15 | sylibr 233 | . . 3 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
17 | onsucb 7807 | . . 3 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) | |
18 | 16, 17 | sylib 217 | . 2 ⊢ (𝐴 <<s 𝐵 → suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
19 | onsucuni 7818 | . . 3 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
20 | 11, 19 | mp1i 13 | . 2 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
21 | etasslt 27322 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | |
22 | 18, 20, 21 | mpd3an23 1463 | 1 ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∪ cun 3946 ⊆ wss 3948 {csn 4628 ∪ cuni 4908 class class class wbr 5148 ran crn 5677 “ cima 5679 Ord word 6363 Oncon0 6364 suc csuc 6366 Fun wfun 6537 ‘cfv 6543 No csur 27150 bday cbday 27152 <<s csslt 27289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-1o 8468 df-2o 8469 df-no 27153 df-slt 27154 df-bday 27155 df-sslt 27290 |
This theorem is referenced by: scutbdaybnd2 27325 |
Copyright terms: Public domain | W3C validator |