| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > etasslt2 | Structured version Visualization version GIF version | ||
| Description: A version of etasslt 27725 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.) |
| Ref | Expression |
|---|---|
| etasslt2 | ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfun 27684 | . . . . . 6 ⊢ Fun bday | |
| 2 | ssltex1 27698 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
| 3 | ssltex2 27699 | . . . . . . 7 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
| 4 | unexg 7719 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∪ 𝐵) ∈ V) |
| 6 | funimaexg 6603 | . . . . . 6 ⊢ ((Fun bday ∧ (𝐴 ∪ 𝐵) ∈ V) → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 8 | 7 | uniexd 7718 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 9 | imassrn 6042 | . . . . . . 7 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ ran bday | |
| 10 | bdayrn 27687 | . . . . . . 7 ⊢ ran bday = On | |
| 11 | 9, 10 | sseqtri 3995 | . . . . . 6 ⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ On |
| 12 | ssorduni 7755 | . . . . . 6 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → Ord ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) |
| 14 | elon2 6343 | . . . . 5 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ (Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) ∧ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V)) | |
| 15 | 13, 14 | mpbiran 709 | . . . 4 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 16 | 8, 15 | sylibr 234 | . . 3 ⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
| 17 | onsucb 7792 | . . 3 ⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ↔ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) | |
| 18 | 16, 17 | sylib 218 | . 2 ⊢ (𝐴 <<s 𝐵 → suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On) |
| 19 | onsucuni 7803 | . . 3 ⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) | |
| 20 | 11, 19 | mp1i 13 | . 2 ⊢ (𝐴 <<s 𝐵 → ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 21 | etasslt 27725 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ On ∧ ( bday “ (𝐴 ∪ 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) | |
| 22 | 18, 20, 21 | mpd3an23 1465 | 1 ⊢ (𝐴 <<s 𝐵 → ∃𝑥 ∈ No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday ‘𝑥) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ran crn 5639 “ cima 5641 Ord word 6331 Oncon0 6332 suc csuc 6334 Fun wfun 6505 ‘cfv 6511 No csur 27551 bday cbday 27553 <<s csslt 27692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 |
| This theorem is referenced by: scutbdaybnd2 27728 |
| Copyright terms: Public domain | W3C validator |