MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  etasslt2 Structured version   Visualization version   GIF version

Theorem etasslt2 27725
Description: A version of etasslt 27724 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
etasslt2 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem etasslt2
StepHypRef Expression
1 bdayfun 27682 . . . . . 6 Fun bday
2 ssltex1 27697 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltex2 27698 . . . . . . 7 (𝐴 <<s 𝐵𝐵 ∈ V)
4 unexg 7679 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
52, 3, 4syl2anc 584 . . . . . 6 (𝐴 <<s 𝐵 → (𝐴𝐵) ∈ V)
6 funimaexg 6569 . . . . . 6 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
71, 5, 6sylancr 587 . . . . 5 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ∈ V)
87uniexd 7678 . . . 4 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ V)
9 imassrn 6022 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
10 bdayrn 27685 . . . . . . 7 ran bday = On
119, 10sseqtri 3984 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
12 ssorduni 7715 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
1311, 12ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
14 elon2 6318 . . . . 5 ( ( bday “ (𝐴𝐵)) ∈ On ↔ (Ord ( bday “ (𝐴𝐵)) ∧ ( bday “ (𝐴𝐵)) ∈ V))
1513, 14mpbiran 709 . . . 4 ( ( bday “ (𝐴𝐵)) ∈ On ↔ ( bday “ (𝐴𝐵)) ∈ V)
168, 15sylibr 234 . . 3 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ On)
17 onsucb 7750 . . 3 ( ( bday “ (𝐴𝐵)) ∈ On ↔ suc ( bday “ (𝐴𝐵)) ∈ On)
1816, 17sylib 218 . 2 (𝐴 <<s 𝐵 → suc ( bday “ (𝐴𝐵)) ∈ On)
19 onsucuni 7761 . . 3 (( bday “ (𝐴𝐵)) ⊆ On → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
2011, 19mp1i 13 . 2 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
21 etasslt 27724 . 2 ((𝐴 <<s 𝐵 ∧ suc ( bday “ (𝐴𝐵)) ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵))) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
2218, 20, 21mpd3an23 1465 1 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wrex 3053  Vcvv 3436  cun 3901  wss 3903  {csn 4577   cuni 4858   class class class wbr 5092  ran crn 5620  cima 5622  Ord word 6306  Oncon0 6307  suc csuc 6309  Fun wfun 6476  cfv 6482   No csur 27549   bday cbday 27551   <<s csslt 27691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692
This theorem is referenced by:  scutbdaybnd2  27727
  Copyright terms: Public domain W3C validator