MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  etasslt2 Structured version   Visualization version   GIF version

Theorem etasslt2 27755
Description: A version of etasslt 27754 with fewer hypotheses but a weaker upper bound. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
etasslt2 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem etasslt2
StepHypRef Expression
1 bdayfun 27711 . . . . . 6 Fun bday
2 ssltex1 27726 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltex2 27727 . . . . . . 7 (𝐴 <<s 𝐵𝐵 ∈ V)
4 unexg 7676 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
52, 3, 4syl2anc 584 . . . . . 6 (𝐴 <<s 𝐵 → (𝐴𝐵) ∈ V)
6 funimaexg 6568 . . . . . 6 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
71, 5, 6sylancr 587 . . . . 5 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ∈ V)
87uniexd 7675 . . . 4 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ V)
9 imassrn 6019 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
10 bdayrn 27714 . . . . . . 7 ran bday = On
119, 10sseqtri 3978 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
12 ssorduni 7712 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
1311, 12ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
14 elon2 6317 . . . . 5 ( ( bday “ (𝐴𝐵)) ∈ On ↔ (Ord ( bday “ (𝐴𝐵)) ∧ ( bday “ (𝐴𝐵)) ∈ V))
1513, 14mpbiran 709 . . . 4 ( ( bday “ (𝐴𝐵)) ∈ On ↔ ( bday “ (𝐴𝐵)) ∈ V)
168, 15sylibr 234 . . 3 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ On)
17 onsucb 7747 . . 3 ( ( bday “ (𝐴𝐵)) ∈ On ↔ suc ( bday “ (𝐴𝐵)) ∈ On)
1816, 17sylib 218 . 2 (𝐴 <<s 𝐵 → suc ( bday “ (𝐴𝐵)) ∈ On)
19 onsucuni 7758 . . 3 (( bday “ (𝐴𝐵)) ⊆ On → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
2011, 19mp1i 13 . 2 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
21 etasslt 27754 . 2 ((𝐴 <<s 𝐵 ∧ suc ( bday “ (𝐴𝐵)) ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ suc ( bday “ (𝐴𝐵))) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
2218, 20, 21mpd3an23 1465 1 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  wrex 3056  Vcvv 3436  cun 3895  wss 3897  {csn 4573   cuni 4856   class class class wbr 5089  ran crn 5615  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308  Fun wfun 6475  cfv 6481   No csur 27578   bday cbday 27580   <<s csslt 27720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721
This theorem is referenced by:  scutbdaybnd2  27757
  Copyright terms: Public domain W3C validator