Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd2rabon Structured version   Visualization version   GIF version

Theorem nadd2rabon 43485
Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd2rabon ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd2rabon
StepHypRef Expression
1 nadd2rabord 43483 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶})
2 nadd2rabex 43484 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V)
3 elon2 6323 . 2 ({𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ On ↔ (Ord {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∧ {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V))
41, 2, 3sylanbrc 583 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2111  {crab 3395  Vcvv 3436  Ord word 6311  Oncon0 6312  (class class class)co 7352   +no cnadd 8586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-frecs 8217  df-nadd 8587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator