Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem13 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. If recs is a set function, then 𝐶 is acceptable, and thus a subset of recs, but dom 𝐶 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem13 | ⊢ ¬ recs(𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem8 8215 | . . 3 ⊢ Ord dom recs(𝐹) |
3 | ordirr 6284 | . . 3 ⊢ (Ord dom recs(𝐹) → ¬ dom recs(𝐹) ∈ dom recs(𝐹)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ¬ dom recs(𝐹) ∈ dom recs(𝐹) |
5 | eqid 2738 | . . . . 5 ⊢ (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
6 | 1, 5 | tfrlem12 8220 | . . . 4 ⊢ (recs(𝐹) ∈ V → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴) |
7 | elssuni 4871 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ ∪ 𝐴) | |
8 | 1 | recsfval 8212 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
9 | 7, 8 | sseqtrrdi 3972 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹)) |
10 | dmss 5811 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) | |
11 | 6, 9, 10 | 3syl 18 | . . 3 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) |
12 | 2 | a1i 11 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → Ord dom recs(𝐹)) |
13 | dmexg 7750 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V) | |
14 | elon2 6277 | . . . . . 6 ⊢ (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V)) | |
15 | 12, 13, 14 | sylanbrc 583 | . . . . 5 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On) |
16 | sucidg 6344 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ suc dom recs(𝐹)) |
18 | 1, 5 | tfrlem10 8218 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
19 | fndm 6536 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) | |
20 | 15, 18, 19 | 3syl 18 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) |
21 | 17, 20 | eleqtrrd 2842 | . . 3 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
22 | 11, 21 | sseldd 3922 | . 2 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom recs(𝐹)) |
23 | 4, 22 | mto 196 | 1 ⊢ ¬ recs(𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 {csn 4561 〈cop 4567 ∪ cuni 4839 dom cdm 5589 ↾ cres 5591 Ord word 6265 Oncon0 6266 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 recscrecs 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 |
This theorem is referenced by: tfrlem14 8222 tfrlem15 8223 tfrlem16 8224 tfr2b 8227 |
Copyright terms: Public domain | W3C validator |