| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. If recs is a set function, then 𝐶 is acceptable, and thus a subset of recs, but dom 𝐶 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem13 | ⊢ ¬ recs(𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem8 8355 | . . 3 ⊢ Ord dom recs(𝐹) |
| 3 | ordirr 6353 | . . 3 ⊢ (Ord dom recs(𝐹) → ¬ dom recs(𝐹) ∈ dom recs(𝐹)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ¬ dom recs(𝐹) ∈ dom recs(𝐹) |
| 5 | eqid 2730 | . . . . 5 ⊢ (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
| 6 | 1, 5 | tfrlem12 8360 | . . . 4 ⊢ (recs(𝐹) ∈ V → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴) |
| 7 | elssuni 4904 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ ∪ 𝐴) | |
| 8 | 1 | recsfval 8352 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
| 9 | 7, 8 | sseqtrrdi 3991 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹)) |
| 10 | dmss 5869 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) | |
| 11 | 6, 9, 10 | 3syl 18 | . . 3 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) |
| 12 | 2 | a1i 11 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → Ord dom recs(𝐹)) |
| 13 | dmexg 7880 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V) | |
| 14 | elon2 6346 | . . . . . 6 ⊢ (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V)) | |
| 15 | 12, 13, 14 | sylanbrc 583 | . . . . 5 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On) |
| 16 | sucidg 6418 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹)) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ suc dom recs(𝐹)) |
| 18 | 1, 5 | tfrlem10 8358 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
| 19 | fndm 6624 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) | |
| 20 | 15, 18, 19 | 3syl 18 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) |
| 21 | 17, 20 | eleqtrrd 2832 | . . 3 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
| 22 | 11, 21 | sseldd 3950 | . 2 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom recs(𝐹)) |
| 23 | 4, 22 | mto 197 | 1 ⊢ ¬ recs(𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 {csn 4592 〈cop 4598 ∪ cuni 4874 dom cdm 5641 ↾ cres 5643 Ord word 6334 Oncon0 6335 suc csuc 6337 Fn wfn 6509 ‘cfv 6514 recscrecs 8342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 |
| This theorem is referenced by: tfrlem14 8362 tfrlem15 8363 tfrlem16 8364 tfr2b 8367 |
| Copyright terms: Public domain | W3C validator |