Step | Hyp | Ref
| Expression |
1 | | tfrlem.1 |
. . . 4
β’ π΄ = {π β£ βπ₯ β On (π Fn π₯ β§ βπ¦ β π₯ (πβπ¦) = (πΉβ(π βΎ π¦)))} |
2 | 1 | tfrlem8 8380 |
. . 3
β’ Ord dom
recs(πΉ) |
3 | | ordirr 6379 |
. . 3
β’ (Ord dom
recs(πΉ) β Β¬ dom
recs(πΉ) β dom
recs(πΉ)) |
4 | 2, 3 | ax-mp 5 |
. 2
β’ Β¬
dom recs(πΉ) β dom
recs(πΉ) |
5 | | eqid 2732 |
. . . . 5
β’
(recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) = (recs(πΉ) βͺ {β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) |
6 | 1, 5 | tfrlem12 8385 |
. . . 4
β’
(recs(πΉ) β V
β (recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β π΄) |
7 | | elssuni 4940 |
. . . . 5
β’
((recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β π΄ β (recs(πΉ) βͺ {β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β βͺ π΄) |
8 | 1 | recsfval 8377 |
. . . . 5
β’
recs(πΉ) = βͺ π΄ |
9 | 7, 8 | sseqtrrdi 4032 |
. . . 4
β’
((recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β π΄ β (recs(πΉ) βͺ {β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β recs(πΉ)) |
10 | | dmss 5900 |
. . . 4
β’
((recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β recs(πΉ) β dom (recs(πΉ) βͺ {β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β dom recs(πΉ)) |
11 | 6, 9, 10 | 3syl 18 |
. . 3
β’
(recs(πΉ) β V
β dom (recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) β dom recs(πΉ)) |
12 | 2 | a1i 11 |
. . . . . 6
β’
(recs(πΉ) β V
β Ord dom recs(πΉ)) |
13 | | dmexg 7890 |
. . . . . 6
β’
(recs(πΉ) β V
β dom recs(πΉ) β
V) |
14 | | elon2 6372 |
. . . . . 6
β’ (dom
recs(πΉ) β On β
(Ord dom recs(πΉ) β§ dom
recs(πΉ) β
V)) |
15 | 12, 13, 14 | sylanbrc 583 |
. . . . 5
β’
(recs(πΉ) β V
β dom recs(πΉ) β
On) |
16 | | sucidg 6442 |
. . . . 5
β’ (dom
recs(πΉ) β On β
dom recs(πΉ) β suc dom
recs(πΉ)) |
17 | 15, 16 | syl 17 |
. . . 4
β’
(recs(πΉ) β V
β dom recs(πΉ) β
suc dom recs(πΉ)) |
18 | 1, 5 | tfrlem10 8383 |
. . . . 5
β’ (dom
recs(πΉ) β On β
(recs(πΉ) βͺ {β¨dom
recs(πΉ), (πΉβrecs(πΉ))β©}) Fn suc dom recs(πΉ)) |
19 | | fndm 6649 |
. . . . 5
β’
((recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) Fn suc dom recs(πΉ) β dom (recs(πΉ) βͺ {β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) = suc dom recs(πΉ)) |
20 | 15, 18, 19 | 3syl 18 |
. . . 4
β’
(recs(πΉ) β V
β dom (recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©}) = suc dom recs(πΉ)) |
21 | 17, 20 | eleqtrrd 2836 |
. . 3
β’
(recs(πΉ) β V
β dom recs(πΉ) β
dom (recs(πΉ) βͺ
{β¨dom recs(πΉ), (πΉβrecs(πΉ))β©})) |
22 | 11, 21 | sseldd 3982 |
. 2
β’
(recs(πΉ) β V
β dom recs(πΉ) β
dom recs(πΉ)) |
23 | 4, 22 | mto 196 |
1
β’ Β¬
recs(πΉ) β
V |