| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. If recs is a set function, then 𝐶 is acceptable, and thus a subset of recs, but dom 𝐶 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem13 | ⊢ ¬ recs(𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem8 8329 | . . 3 ⊢ Ord dom recs(𝐹) |
| 3 | ordirr 6338 | . . 3 ⊢ (Ord dom recs(𝐹) → ¬ dom recs(𝐹) ∈ dom recs(𝐹)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ¬ dom recs(𝐹) ∈ dom recs(𝐹) |
| 5 | eqid 2729 | . . . . 5 ⊢ (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
| 6 | 1, 5 | tfrlem12 8334 | . . . 4 ⊢ (recs(𝐹) ∈ V → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴) |
| 7 | elssuni 4897 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ ∪ 𝐴) | |
| 8 | 1 | recsfval 8326 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
| 9 | 7, 8 | sseqtrrdi 3985 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹)) |
| 10 | dmss 5856 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) | |
| 11 | 6, 9, 10 | 3syl 18 | . . 3 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) |
| 12 | 2 | a1i 11 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → Ord dom recs(𝐹)) |
| 13 | dmexg 7857 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V) | |
| 14 | elon2 6331 | . . . . . 6 ⊢ (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V)) | |
| 15 | 12, 13, 14 | sylanbrc 583 | . . . . 5 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On) |
| 16 | sucidg 6403 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹)) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ suc dom recs(𝐹)) |
| 18 | 1, 5 | tfrlem10 8332 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
| 19 | fndm 6603 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) | |
| 20 | 15, 18, 19 | 3syl 18 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) |
| 21 | 17, 20 | eleqtrrd 2831 | . . 3 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
| 22 | 11, 21 | sseldd 3944 | . 2 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom recs(𝐹)) |
| 23 | 4, 22 | mto 197 | 1 ⊢ ¬ recs(𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 {csn 4585 〈cop 4591 ∪ cuni 4867 dom cdm 5631 ↾ cres 5633 Ord word 6319 Oncon0 6320 suc csuc 6322 Fn wfn 6494 ‘cfv 6499 recscrecs 8316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 |
| This theorem is referenced by: tfrlem14 8336 tfrlem15 8337 tfrlem16 8338 tfr2b 8341 |
| Copyright terms: Public domain | W3C validator |