| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. If recs is a set function, then 𝐶 is acceptable, and thus a subset of recs, but dom 𝐶 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem13 | ⊢ ¬ recs(𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem8 8352 | . . 3 ⊢ Ord dom recs(𝐹) |
| 3 | ordirr 6350 | . . 3 ⊢ (Ord dom recs(𝐹) → ¬ dom recs(𝐹) ∈ dom recs(𝐹)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ¬ dom recs(𝐹) ∈ dom recs(𝐹) |
| 5 | eqid 2729 | . . . . 5 ⊢ (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
| 6 | 1, 5 | tfrlem12 8357 | . . . 4 ⊢ (recs(𝐹) ∈ V → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴) |
| 7 | elssuni 4901 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ ∪ 𝐴) | |
| 8 | 1 | recsfval 8349 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
| 9 | 7, 8 | sseqtrrdi 3988 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∈ 𝐴 → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹)) |
| 10 | dmss 5866 | . . . 4 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) | |
| 11 | 6, 9, 10 | 3syl 18 | . . 3 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ⊆ dom recs(𝐹)) |
| 12 | 2 | a1i 11 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → Ord dom recs(𝐹)) |
| 13 | dmexg 7877 | . . . . . 6 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V) | |
| 14 | elon2 6343 | . . . . . 6 ⊢ (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V)) | |
| 15 | 12, 13, 14 | sylanbrc 583 | . . . . 5 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On) |
| 16 | sucidg 6415 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹)) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ suc dom recs(𝐹)) |
| 18 | 1, 5 | tfrlem10 8355 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
| 19 | fndm 6621 | . . . . 5 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹) → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) | |
| 20 | 15, 18, 19 | 3syl 18 | . . . 4 ⊢ (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹)) |
| 21 | 17, 20 | eleqtrrd 2831 | . . 3 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
| 22 | 11, 21 | sseldd 3947 | . 2 ⊢ (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom recs(𝐹)) |
| 23 | 4, 22 | mto 197 | 1 ⊢ ¬ recs(𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 {csn 4589 〈cop 4595 ∪ cuni 4871 dom cdm 5638 ↾ cres 5640 Ord word 6331 Oncon0 6332 suc csuc 6334 Fn wfn 6506 ‘cfv 6511 recscrecs 8339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 |
| This theorem is referenced by: tfrlem14 8359 tfrlem15 8360 tfrlem16 8361 tfr2b 8364 |
| Copyright terms: Public domain | W3C validator |