MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem13 Structured version   Visualization version   GIF version

Theorem tfrlem13 8386
Description: Lemma for transfinite recursion. If recs is a set function, then 𝐢 is acceptable, and thus a subset of recs, but dom 𝐢 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ βˆƒπ‘₯ ∈ On (𝑓 Fn π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (πΉβ€˜(𝑓 β†Ύ 𝑦)))}
Assertion
Ref Expression
tfrlem13 ¬ recs(𝐹) ∈ V
Distinct variable group:   π‘₯,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑓)

Proof of Theorem tfrlem13
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ βˆƒπ‘₯ ∈ On (𝑓 Fn π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (πΉβ€˜(𝑓 β†Ύ 𝑦)))}
21tfrlem8 8380 . . 3 Ord dom recs(𝐹)
3 ordirr 6379 . . 3 (Ord dom recs(𝐹) β†’ Β¬ dom recs(𝐹) ∈ dom recs(𝐹))
42, 3ax-mp 5 . 2 Β¬ dom recs(𝐹) ∈ dom recs(𝐹)
5 eqid 2732 . . . . 5 (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) = (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩})
61, 5tfrlem12 8385 . . . 4 (recs(𝐹) ∈ V β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) ∈ 𝐴)
7 elssuni 4940 . . . . 5 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) ∈ 𝐴 β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† βˆͺ 𝐴)
81recsfval 8377 . . . . 5 recs(𝐹) = βˆͺ 𝐴
97, 8sseqtrrdi 4032 . . . 4 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) ∈ 𝐴 β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† recs(𝐹))
10 dmss 5900 . . . 4 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† recs(𝐹) β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† dom recs(𝐹))
116, 9, 103syl 18 . . 3 (recs(𝐹) ∈ V β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† dom recs(𝐹))
122a1i 11 . . . . . 6 (recs(𝐹) ∈ V β†’ Ord dom recs(𝐹))
13 dmexg 7890 . . . . . 6 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ V)
14 elon2 6372 . . . . . 6 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
1512, 13, 14sylanbrc 583 . . . . 5 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ On)
16 sucidg 6442 . . . . 5 (dom recs(𝐹) ∈ On β†’ dom recs(𝐹) ∈ suc dom recs(𝐹))
1715, 16syl 17 . . . 4 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ suc dom recs(𝐹))
181, 5tfrlem10 8383 . . . . 5 (dom recs(𝐹) ∈ On β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) Fn suc dom recs(𝐹))
19 fndm 6649 . . . . 5 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) Fn suc dom recs(𝐹) β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) = suc dom recs(𝐹))
2015, 18, 193syl 18 . . . 4 (recs(𝐹) ∈ V β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) = suc dom recs(𝐹))
2117, 20eleqtrrd 2836 . . 3 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}))
2211, 21sseldd 3982 . 2 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ dom recs(𝐹))
234, 22mto 196 1 Β¬ recs(𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆͺ cun 3945   βŠ† wss 3947  {csn 4627  βŸ¨cop 4633  βˆͺ cuni 4907  dom cdm 5675   β†Ύ cres 5677  Ord word 6360  Oncon0 6361  suc csuc 6363   Fn wfn 6535  β€˜cfv 6540  recscrecs 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367
This theorem is referenced by:  tfrlem14  8387  tfrlem15  8388  tfrlem16  8389  tfr2b  8392
  Copyright terms: Public domain W3C validator