MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem13 Structured version   Visualization version   GIF version

Theorem tfrlem13 8392
Description: Lemma for transfinite recursion. If recs is a set function, then 𝐢 is acceptable, and thus a subset of recs, but dom 𝐢 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ βˆƒπ‘₯ ∈ On (𝑓 Fn π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (πΉβ€˜(𝑓 β†Ύ 𝑦)))}
Assertion
Ref Expression
tfrlem13 ¬ recs(𝐹) ∈ V
Distinct variable group:   π‘₯,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑓)

Proof of Theorem tfrlem13
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ βˆƒπ‘₯ ∈ On (𝑓 Fn π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (πΉβ€˜(𝑓 β†Ύ 𝑦)))}
21tfrlem8 8386 . . 3 Ord dom recs(𝐹)
3 ordirr 6381 . . 3 (Ord dom recs(𝐹) β†’ Β¬ dom recs(𝐹) ∈ dom recs(𝐹))
42, 3ax-mp 5 . 2 Β¬ dom recs(𝐹) ∈ dom recs(𝐹)
5 eqid 2730 . . . . 5 (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) = (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩})
61, 5tfrlem12 8391 . . . 4 (recs(𝐹) ∈ V β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) ∈ 𝐴)
7 elssuni 4940 . . . . 5 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) ∈ 𝐴 β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† βˆͺ 𝐴)
81recsfval 8383 . . . . 5 recs(𝐹) = βˆͺ 𝐴
97, 8sseqtrrdi 4032 . . . 4 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) ∈ 𝐴 β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† recs(𝐹))
10 dmss 5901 . . . 4 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† recs(𝐹) β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† dom recs(𝐹))
116, 9, 103syl 18 . . 3 (recs(𝐹) ∈ V β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) βŠ† dom recs(𝐹))
122a1i 11 . . . . . 6 (recs(𝐹) ∈ V β†’ Ord dom recs(𝐹))
13 dmexg 7896 . . . . . 6 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ V)
14 elon2 6374 . . . . . 6 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
1512, 13, 14sylanbrc 581 . . . . 5 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ On)
16 sucidg 6444 . . . . 5 (dom recs(𝐹) ∈ On β†’ dom recs(𝐹) ∈ suc dom recs(𝐹))
1715, 16syl 17 . . . 4 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ suc dom recs(𝐹))
181, 5tfrlem10 8389 . . . . 5 (dom recs(𝐹) ∈ On β†’ (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) Fn suc dom recs(𝐹))
19 fndm 6651 . . . . 5 ((recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) Fn suc dom recs(𝐹) β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) = suc dom recs(𝐹))
2015, 18, 193syl 18 . . . 4 (recs(𝐹) ∈ V β†’ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}) = suc dom recs(𝐹))
2117, 20eleqtrrd 2834 . . 3 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ dom (recs(𝐹) βˆͺ {⟨dom recs(𝐹), (πΉβ€˜recs(𝐹))⟩}))
2211, 21sseldd 3982 . 2 (recs(𝐹) ∈ V β†’ dom recs(𝐹) ∈ dom recs(𝐹))
234, 22mto 196 1 Β¬ recs(𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 394   = wceq 1539   ∈ wcel 2104  {cab 2707  βˆ€wral 3059  βˆƒwrex 3068  Vcvv 3472   βˆͺ cun 3945   βŠ† wss 3947  {csn 4627  βŸ¨cop 4633  βˆͺ cuni 4907  dom cdm 5675   β†Ύ cres 5677  Ord word 6362  Oncon0 6363  suc csuc 6365   Fn wfn 6537  β€˜cfv 6542  recscrecs 8372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373
This theorem is referenced by:  tfrlem14  8393  tfrlem15  8394  tfrlem16  8395  tfr2b  8398
  Copyright terms: Public domain W3C validator