Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldlim Structured version   Visualization version   GIF version

Theorem oldlim 33996
Description: The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
oldlim ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = ( O “ 𝐴))

Proof of Theorem oldlim
Dummy variables 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 767 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑐𝐴)
2 limsuc 7671 . . . . . . . . 9 (Lim 𝐴 → (𝑐𝐴 ↔ suc 𝑐𝐴))
32ad2antrr 722 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → (𝑐𝐴 ↔ suc 𝑐𝐴))
41, 3mpbid 231 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → suc 𝑐𝐴)
5 simprr 769 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( M ‘𝑐))
6 limord 6310 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
7 elex 3440 . . . . . . . . . . . 12 (𝐴𝑉𝐴 ∈ V)
86, 7anim12i 612 . . . . . . . . . . 11 ((Lim 𝐴𝐴𝑉) → (Ord 𝐴𝐴 ∈ V))
9 elon2 6262 . . . . . . . . . . 11 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
108, 9sylibr 233 . . . . . . . . . 10 ((Lim 𝐴𝐴𝑉) → 𝐴 ∈ On)
11 onelon 6276 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑐𝐴) → 𝑐 ∈ On)
1210, 1, 11syl2an2r 681 . . . . . . . . 9 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑐 ∈ On)
13 madeoldsuc 33994 . . . . . . . . 9 (𝑐 ∈ On → ( M ‘𝑐) = ( O ‘suc 𝑐))
1412, 13syl 17 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → ( M ‘𝑐) = ( O ‘suc 𝑐))
155, 14eleqtrd 2841 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( O ‘suc 𝑐))
16 fveq2 6756 . . . . . . . . 9 (𝑏 = suc 𝑐 → ( O ‘𝑏) = ( O ‘suc 𝑐))
1716eleq2d 2824 . . . . . . . 8 (𝑏 = suc 𝑐 → (𝑥 ∈ ( O ‘𝑏) ↔ 𝑥 ∈ ( O ‘suc 𝑐)))
1817rspcev 3552 . . . . . . 7 ((suc 𝑐𝐴𝑥 ∈ ( O ‘suc 𝑐)) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
194, 15, 18syl2anc 583 . . . . . 6 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
2019rexlimdvaa 3213 . . . . 5 ((Lim 𝐴𝐴𝑉) → (∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
21 simprl 767 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑏𝐴)
22 oldssmade 33987 . . . . . . . 8 ( O ‘𝑏) ⊆ ( M ‘𝑏)
23 simprr 769 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( O ‘𝑏))
2422, 23sselid 3915 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( M ‘𝑏))
25 fveq2 6756 . . . . . . . . 9 (𝑐 = 𝑏 → ( M ‘𝑐) = ( M ‘𝑏))
2625eleq2d 2824 . . . . . . . 8 (𝑐 = 𝑏 → (𝑥 ∈ ( M ‘𝑐) ↔ 𝑥 ∈ ( M ‘𝑏)))
2726rspcev 3552 . . . . . . 7 ((𝑏𝐴𝑥 ∈ ( M ‘𝑏)) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐))
2821, 24, 27syl2anc 583 . . . . . 6 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐))
2928rexlimdvaa 3213 . . . . 5 ((Lim 𝐴𝐴𝑉) → (∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
3020, 29impbid 211 . . . 4 ((Lim 𝐴𝐴𝑉) → (∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
31 elold 33980 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
3210, 31syl 17 . . . 4 ((Lim 𝐴𝐴𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
33 eliun 4925 . . . . 5 (𝑥 𝑏𝐴 ( O ‘𝑏) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
3433a1i 11 . . . 4 ((Lim 𝐴𝐴𝑉) → (𝑥 𝑏𝐴 ( O ‘𝑏) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
3530, 32, 343bitr4d 310 . . 3 ((Lim 𝐴𝐴𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ 𝑥 𝑏𝐴 ( O ‘𝑏)))
3635eqrdv 2736 . 2 ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = 𝑏𝐴 ( O ‘𝑏))
37 oldf 33968 . . 3 O :On⟶𝒫 No
38 ffun 6587 . . 3 ( O :On⟶𝒫 No → Fun O )
39 funiunfv 7103 . . 3 (Fun O → 𝑏𝐴 ( O ‘𝑏) = ( O “ 𝐴))
4037, 38, 39mp2b 10 . 2 𝑏𝐴 ( O ‘𝑏) = ( O “ 𝐴)
4136, 40eqtrdi 2795 1 ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = ( O “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  𝒫 cpw 4530   cuni 4836   ciun 4921  cima 5583  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  Fun wfun 6412  wf 6414  cfv 6418   No csur 33770   M cmade 33953   O cold 33954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator