MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldlim Structured version   Visualization version   GIF version

Theorem oldlim 27798
Description: The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
oldlim ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = ( O “ 𝐴))

Proof of Theorem oldlim
Dummy variables 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑐𝐴)
2 limsuc 7825 . . . . . . . . 9 (Lim 𝐴 → (𝑐𝐴 ↔ suc 𝑐𝐴))
32ad2antrr 726 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → (𝑐𝐴 ↔ suc 𝑐𝐴))
41, 3mpbid 232 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → suc 𝑐𝐴)
5 simprr 772 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( M ‘𝑐))
6 limord 6393 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
7 elex 3468 . . . . . . . . . . . 12 (𝐴𝑉𝐴 ∈ V)
86, 7anim12i 613 . . . . . . . . . . 11 ((Lim 𝐴𝐴𝑉) → (Ord 𝐴𝐴 ∈ V))
9 elon2 6343 . . . . . . . . . . 11 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
108, 9sylibr 234 . . . . . . . . . 10 ((Lim 𝐴𝐴𝑉) → 𝐴 ∈ On)
11 onelon 6357 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑐𝐴) → 𝑐 ∈ On)
1210, 1, 11syl2an2r 685 . . . . . . . . 9 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑐 ∈ On)
13 madeoldsuc 27796 . . . . . . . . 9 (𝑐 ∈ On → ( M ‘𝑐) = ( O ‘suc 𝑐))
1412, 13syl 17 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → ( M ‘𝑐) = ( O ‘suc 𝑐))
155, 14eleqtrd 2830 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( O ‘suc 𝑐))
16 fveq2 6858 . . . . . . . . 9 (𝑏 = suc 𝑐 → ( O ‘𝑏) = ( O ‘suc 𝑐))
1716eleq2d 2814 . . . . . . . 8 (𝑏 = suc 𝑐 → (𝑥 ∈ ( O ‘𝑏) ↔ 𝑥 ∈ ( O ‘suc 𝑐)))
1817rspcev 3588 . . . . . . 7 ((suc 𝑐𝐴𝑥 ∈ ( O ‘suc 𝑐)) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
194, 15, 18syl2anc 584 . . . . . 6 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
2019rexlimdvaa 3135 . . . . 5 ((Lim 𝐴𝐴𝑉) → (∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
21 simprl 770 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑏𝐴)
22 oldssmade 27789 . . . . . . . 8 ( O ‘𝑏) ⊆ ( M ‘𝑏)
23 simprr 772 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( O ‘𝑏))
2422, 23sselid 3944 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( M ‘𝑏))
25 fveq2 6858 . . . . . . . . 9 (𝑐 = 𝑏 → ( M ‘𝑐) = ( M ‘𝑏))
2625eleq2d 2814 . . . . . . . 8 (𝑐 = 𝑏 → (𝑥 ∈ ( M ‘𝑐) ↔ 𝑥 ∈ ( M ‘𝑏)))
2726rspcev 3588 . . . . . . 7 ((𝑏𝐴𝑥 ∈ ( M ‘𝑏)) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐))
2821, 24, 27syl2anc 584 . . . . . 6 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐))
2928rexlimdvaa 3135 . . . . 5 ((Lim 𝐴𝐴𝑉) → (∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
3020, 29impbid 212 . . . 4 ((Lim 𝐴𝐴𝑉) → (∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
31 elold 27781 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
3210, 31syl 17 . . . 4 ((Lim 𝐴𝐴𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
33 eliun 4959 . . . . 5 (𝑥 𝑏𝐴 ( O ‘𝑏) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
3433a1i 11 . . . 4 ((Lim 𝐴𝐴𝑉) → (𝑥 𝑏𝐴 ( O ‘𝑏) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
3530, 32, 343bitr4d 311 . . 3 ((Lim 𝐴𝐴𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ 𝑥 𝑏𝐴 ( O ‘𝑏)))
3635eqrdv 2727 . 2 ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = 𝑏𝐴 ( O ‘𝑏))
37 oldf 27765 . . 3 O :On⟶𝒫 No
38 ffun 6691 . . 3 ( O :On⟶𝒫 No → Fun O )
39 funiunfv 7222 . . 3 (Fun O → 𝑏𝐴 ( O ‘𝑏) = ( O “ 𝐴))
4037, 38, 39mp2b 10 . 2 𝑏𝐴 ( O ‘𝑏) = ( O “ 𝐴)
4136, 40eqtrdi 2780 1 ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = ( O “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  𝒫 cpw 4563   cuni 4871   ciun 4955  cima 5641  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  Fun wfun 6505  wf 6507  cfv 6511   No csur 27551   M cmade 27750   O cold 27751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-made 27755  df-old 27756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator