MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldlim Structured version   Visualization version   GIF version

Theorem oldlim 27939
Description: The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
oldlim ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = ( O “ 𝐴))

Proof of Theorem oldlim
Dummy variables 𝑥 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑐𝐴)
2 limsuc 7869 . . . . . . . . 9 (Lim 𝐴 → (𝑐𝐴 ↔ suc 𝑐𝐴))
32ad2antrr 726 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → (𝑐𝐴 ↔ suc 𝑐𝐴))
41, 3mpbid 232 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → suc 𝑐𝐴)
5 simprr 773 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( M ‘𝑐))
6 limord 6445 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
7 elex 3498 . . . . . . . . . . . 12 (𝐴𝑉𝐴 ∈ V)
86, 7anim12i 613 . . . . . . . . . . 11 ((Lim 𝐴𝐴𝑉) → (Ord 𝐴𝐴 ∈ V))
9 elon2 6396 . . . . . . . . . . 11 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
108, 9sylibr 234 . . . . . . . . . 10 ((Lim 𝐴𝐴𝑉) → 𝐴 ∈ On)
11 onelon 6410 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑐𝐴) → 𝑐 ∈ On)
1210, 1, 11syl2an2r 685 . . . . . . . . 9 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑐 ∈ On)
13 madeoldsuc 27937 . . . . . . . . 9 (𝑐 ∈ On → ( M ‘𝑐) = ( O ‘suc 𝑐))
1412, 13syl 17 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → ( M ‘𝑐) = ( O ‘suc 𝑐))
155, 14eleqtrd 2840 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( O ‘suc 𝑐))
16 fveq2 6906 . . . . . . . . 9 (𝑏 = suc 𝑐 → ( O ‘𝑏) = ( O ‘suc 𝑐))
1716eleq2d 2824 . . . . . . . 8 (𝑏 = suc 𝑐 → (𝑥 ∈ ( O ‘𝑏) ↔ 𝑥 ∈ ( O ‘suc 𝑐)))
1817rspcev 3621 . . . . . . 7 ((suc 𝑐𝐴𝑥 ∈ ( O ‘suc 𝑐)) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
194, 15, 18syl2anc 584 . . . . . 6 (((Lim 𝐴𝐴𝑉) ∧ (𝑐𝐴𝑥 ∈ ( M ‘𝑐))) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
2019rexlimdvaa 3153 . . . . 5 ((Lim 𝐴𝐴𝑉) → (∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐) → ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
21 simprl 771 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑏𝐴)
22 oldssmade 27930 . . . . . . . 8 ( O ‘𝑏) ⊆ ( M ‘𝑏)
23 simprr 773 . . . . . . . 8 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( O ‘𝑏))
2422, 23sselid 3992 . . . . . . 7 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( M ‘𝑏))
25 fveq2 6906 . . . . . . . . 9 (𝑐 = 𝑏 → ( M ‘𝑐) = ( M ‘𝑏))
2625eleq2d 2824 . . . . . . . 8 (𝑐 = 𝑏 → (𝑥 ∈ ( M ‘𝑐) ↔ 𝑥 ∈ ( M ‘𝑏)))
2726rspcev 3621 . . . . . . 7 ((𝑏𝐴𝑥 ∈ ( M ‘𝑏)) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐))
2821, 24, 27syl2anc 584 . . . . . 6 (((Lim 𝐴𝐴𝑉) ∧ (𝑏𝐴𝑥 ∈ ( O ‘𝑏))) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐))
2928rexlimdvaa 3153 . . . . 5 ((Lim 𝐴𝐴𝑉) → (∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏) → ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
3020, 29impbid 212 . . . 4 ((Lim 𝐴𝐴𝑉) → (∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
31 elold 27922 . . . . 5 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
3210, 31syl 17 . . . 4 ((Lim 𝐴𝐴𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐𝐴 𝑥 ∈ ( M ‘𝑐)))
33 eliun 4999 . . . . 5 (𝑥 𝑏𝐴 ( O ‘𝑏) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏))
3433a1i 11 . . . 4 ((Lim 𝐴𝐴𝑉) → (𝑥 𝑏𝐴 ( O ‘𝑏) ↔ ∃𝑏𝐴 𝑥 ∈ ( O ‘𝑏)))
3530, 32, 343bitr4d 311 . . 3 ((Lim 𝐴𝐴𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ 𝑥 𝑏𝐴 ( O ‘𝑏)))
3635eqrdv 2732 . 2 ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = 𝑏𝐴 ( O ‘𝑏))
37 oldf 27910 . . 3 O :On⟶𝒫 No
38 ffun 6739 . . 3 ( O :On⟶𝒫 No → Fun O )
39 funiunfv 7267 . . 3 (Fun O → 𝑏𝐴 ( O ‘𝑏) = ( O “ 𝐴))
4037, 38, 39mp2b 10 . 2 𝑏𝐴 ( O ‘𝑏) = ( O “ 𝐴)
4136, 40eqtrdi 2790 1 ((Lim 𝐴𝐴𝑉) → ( O ‘𝐴) = ( O “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wrex 3067  Vcvv 3477  𝒫 cpw 4604   cuni 4911   ciun 4995  cima 5691  Ord word 6384  Oncon0 6385  Lim wlim 6386  suc csuc 6387  Fun wfun 6556  wf 6558  cfv 6562   No csur 27698   M cmade 27895   O cold 27896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-1o 8504  df-2o 8505  df-no 27701  df-slt 27702  df-bday 27703  df-sslt 27840  df-scut 27842  df-made 27900  df-old 27901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator