Step | Hyp | Ref
| Expression |
1 | | simprl 770 |
. . . . . . . . 9
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → 𝑐 ∈ 𝐴) |
2 | | limsuc 7569 |
. . . . . . . . . 10
⊢ (Lim
𝐴 → (𝑐 ∈ 𝐴 ↔ suc 𝑐 ∈ 𝐴)) |
3 | 2 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → (𝑐 ∈ 𝐴 ↔ suc 𝑐 ∈ 𝐴)) |
4 | 1, 3 | mpbid 235 |
. . . . . . . 8
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → suc 𝑐 ∈ 𝐴) |
5 | | simprr 772 |
. . . . . . . . 9
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( M ‘𝑐)) |
6 | | limord 6233 |
. . . . . . . . . . . . 13
⊢ (Lim
𝐴 → Ord 𝐴) |
7 | | elex 3428 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
8 | 6, 7 | anim12i 615 |
. . . . . . . . . . . 12
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → (Ord 𝐴 ∧ 𝐴 ∈ V)) |
9 | | elon2 6185 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
10 | 8, 9 | sylibr 237 |
. . . . . . . . . . 11
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ On) |
11 | | onelon 6199 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ On) |
12 | 10, 1, 11 | syl2an2r 684 |
. . . . . . . . . 10
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → 𝑐 ∈ On) |
13 | | madeoldsuc 33658 |
. . . . . . . . . 10
⊢ (𝑐 ∈ On → ( M
‘𝑐) = ( O ‘suc
𝑐)) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → ( M ‘𝑐) = ( O ‘suc 𝑐)) |
15 | 5, 14 | eleqtrd 2854 |
. . . . . . . 8
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → 𝑥 ∈ ( O ‘suc 𝑐)) |
16 | | fveq2 6663 |
. . . . . . . . . 10
⊢ (𝑏 = suc 𝑐 → ( O ‘𝑏) = ( O ‘suc 𝑐)) |
17 | 16 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝑏 = suc 𝑐 → (𝑥 ∈ ( O ‘𝑏) ↔ 𝑥 ∈ ( O ‘suc 𝑐))) |
18 | 17 | rspcev 3543 |
. . . . . . . 8
⊢ ((suc
𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘suc 𝑐)) → ∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏)) |
19 | 4, 15, 18 | syl2anc 587 |
. . . . . . 7
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑐))) → ∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏)) |
20 | 19 | expr 460 |
. . . . . 6
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑐 ∈ 𝐴) → (𝑥 ∈ ( M ‘𝑐) → ∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏))) |
21 | 20 | rexlimdva 3208 |
. . . . 5
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → (∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐) → ∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏))) |
22 | | simprl 770 |
. . . . . . . 8
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘𝑏))) → 𝑏 ∈ 𝐴) |
23 | | onelon 6199 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ On) |
24 | 10, 22, 23 | syl2an2r 684 |
. . . . . . . . . 10
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘𝑏))) → 𝑏 ∈ On) |
25 | | oldssmade 33651 |
. . . . . . . . . 10
⊢ (𝑏 ∈ On → ( O
‘𝑏) ⊆ ( M
‘𝑏)) |
26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘𝑏))) → ( O ‘𝑏) ⊆ ( M ‘𝑏)) |
27 | | simprr 772 |
. . . . . . . . 9
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( O ‘𝑏)) |
28 | 26, 27 | sseldd 3895 |
. . . . . . . 8
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘𝑏))) → 𝑥 ∈ ( M ‘𝑏)) |
29 | | fveq2 6663 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → ( M ‘𝑐) = ( M ‘𝑏)) |
30 | 29 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑥 ∈ ( M ‘𝑐) ↔ 𝑥 ∈ ( M ‘𝑏))) |
31 | 30 | rspcev 3543 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘𝑏)) → ∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐)) |
32 | 22, 28, 31 | syl2anc 587 |
. . . . . . 7
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘𝑏))) → ∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐)) |
33 | 32 | expr 460 |
. . . . . 6
⊢ (((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑏 ∈ 𝐴) → (𝑥 ∈ ( O ‘𝑏) → ∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐))) |
34 | 33 | rexlimdva 3208 |
. . . . 5
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏) → ∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐))) |
35 | 21, 34 | impbid 215 |
. . . 4
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → (∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏))) |
36 | | elold 33643 |
. . . . 5
⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐))) |
37 | 10, 36 | syl 17 |
. . . 4
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘𝑐))) |
38 | | eliun 4890 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝑏 ∈ 𝐴 ( O ‘𝑏) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏)) |
39 | 38 | a1i 11 |
. . . 4
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ∪
𝑏 ∈ 𝐴 ( O ‘𝑏) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘𝑏))) |
40 | 35, 37, 39 | 3bitr4d 314 |
. . 3
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ( O ‘𝐴) ↔ 𝑥 ∈ ∪
𝑏 ∈ 𝐴 ( O ‘𝑏))) |
41 | 40 | eqrdv 2756 |
. 2
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → ( O ‘𝐴) = ∪
𝑏 ∈ 𝐴 ( O ‘𝑏)) |
42 | | oldf 33635 |
. . 3
⊢ O
:On⟶𝒫 No |
43 | | ffun 6506 |
. . 3
⊢ ( O
:On⟶𝒫 No → Fun O
) |
44 | | funiunfv 7005 |
. . 3
⊢ (Fun O
→ ∪ 𝑏 ∈ 𝐴 ( O ‘𝑏) = ∪ ( O “
𝐴)) |
45 | 42, 43, 44 | mp2b 10 |
. 2
⊢ ∪ 𝑏 ∈ 𝐴 ( O ‘𝑏) = ∪ ( O “
𝐴) |
46 | 41, 45 | eqtrdi 2809 |
1
⊢ ((Lim
𝐴 ∧ 𝐴 ∈ 𝑉) → ( O ‘𝐴) = ∪ ( O “
𝐴)) |