| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oaltublim | Structured version Visualization version GIF version | ||
| Description: Given 𝐶 is a limit ordinal, the sum of any ordinal with an ordinal less than 𝐶 is less than the sum of the first ordinal with 𝐶. Lemma 3.5 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oaltublim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6367 | . . . . . 6 ⊢ (Lim 𝐶 → Ord 𝐶) | |
| 2 | elex 3457 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 3 | 1, 2 | anim12i 613 | . . . . 5 ⊢ ((Lim 𝐶 ∧ 𝐶 ∈ 𝑉) → (Ord 𝐶 ∧ 𝐶 ∈ V)) |
| 4 | elon2 6317 | . . . . 5 ⊢ (𝐶 ∈ On ↔ (Ord 𝐶 ∧ 𝐶 ∈ V)) | |
| 5 | 3, 4 | sylibr 234 | . . . 4 ⊢ ((Lim 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ On) |
| 6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ On) |
| 7 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ On) | |
| 8 | 6, 7 | jca 511 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐶 ∈ On ∧ 𝐴 ∈ On)) |
| 9 | simp2 1137 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝐶) | |
| 10 | oaordi 8461 | . 2 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | |
| 11 | 8, 9, 10 | sylc 65 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 Vcvv 3436 Ord word 6305 Oncon0 6306 Lim wlim 6307 (class class class)co 7346 +o coa 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-oadd 8389 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |