|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bdayimaon | Structured version Visualization version GIF version | ||
| Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| bdayimaon | ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdayfo 27723 | . . . . . 6 ⊢ bday : No –onto→On | |
| 2 | fofun 6820 | . . . . . 6 ⊢ ( bday : No –onto→On → Fun bday ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Fun bday | 
| 4 | funimaexg 6652 | . . . . 5 ⊢ ((Fun bday ∧ 𝐴 ∈ 𝑉) → ( bday “ 𝐴) ∈ V) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( bday “ 𝐴) ∈ V) | 
| 6 | 5 | uniexd 7763 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ ( bday “ 𝐴) ∈ V) | 
| 7 | imassrn 6088 | . . . . 5 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
| 8 | forn 6822 | . . . . . 6 ⊢ ( bday : No –onto→On → ran bday = On) | |
| 9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ ran bday = On | 
| 10 | 7, 9 | sseqtri 4031 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ On | 
| 11 | ssorduni 7800 | . . . 4 ⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Ord ∪ ( bday “ 𝐴) | 
| 13 | 6, 12 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | 
| 14 | elon2 6394 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | |
| 15 | onsucb 7838 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ suc ∪ ( bday “ 𝐴) ∈ On) | |
| 16 | 14, 15 | bitr3i 277 | . 2 ⊢ ((Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V) ↔ suc ∪ ( bday “ 𝐴) ∈ On) | 
| 17 | 13, 16 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 ∪ cuni 4906 ran crn 5685 “ cima 5687 Ord word 6382 Oncon0 6383 suc csuc 6385 Fun wfun 6554 –onto→wfo 6558 No csur 27685 bday cbday 27687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-suc 6389 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-1o 8507 df-no 27688 df-bday 27690 | 
| This theorem is referenced by: noetasuplem1 27779 noetainflem1 27783 | 
| Copyright terms: Public domain | W3C validator |