MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayimaon Structured version   Visualization version   GIF version

Theorem bdayimaon 27756
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.)
Assertion
Ref Expression
bdayimaon (𝐴𝑉 → suc ( bday 𝐴) ∈ On)

Proof of Theorem bdayimaon
StepHypRef Expression
1 bdayfo 27740 . . . . . 6 bday : No onto→On
2 fofun 6835 . . . . . 6 ( bday : No onto→On → Fun bday )
31, 2ax-mp 5 . . . . 5 Fun bday
4 funimaexg 6664 . . . . 5 ((Fun bday 𝐴𝑉) → ( bday 𝐴) ∈ V)
53, 4mpan 689 . . . 4 (𝐴𝑉 → ( bday 𝐴) ∈ V)
65uniexd 7777 . . 3 (𝐴𝑉 ( bday 𝐴) ∈ V)
7 imassrn 6100 . . . . 5 ( bday 𝐴) ⊆ ran bday
8 forn 6837 . . . . . 6 ( bday : No onto→On → ran bday = On)
91, 8ax-mp 5 . . . . 5 ran bday = On
107, 9sseqtri 4045 . . . 4 ( bday 𝐴) ⊆ On
11 ssorduni 7814 . . . 4 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
1210, 11ax-mp 5 . . 3 Ord ( bday 𝐴)
136, 12jctil 519 . 2 (𝐴𝑉 → (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
14 elon2 6406 . . 3 ( ( bday 𝐴) ∈ On ↔ (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
15 onsucb 7853 . . 3 ( ( bday 𝐴) ∈ On ↔ suc ( bday 𝐴) ∈ On)
1614, 15bitr3i 277 . 2 ((Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V) ↔ suc ( bday 𝐴) ∈ On)
1713, 16sylib 218 1 (𝐴𝑉 → suc ( bday 𝐴) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   cuni 4931  ran crn 5701  cima 5703  Ord word 6394  Oncon0 6395  suc csuc 6397  Fun wfun 6567  ontowfo 6571   No csur 27702   bday cbday 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-1o 8522  df-no 27705  df-bday 27707
This theorem is referenced by:  noetasuplem1  27796  noetainflem1  27800
  Copyright terms: Public domain W3C validator