| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayimaon | Structured version Visualization version GIF version | ||
| Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| bdayimaon | ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27646 | . . . . . 6 ⊢ bday : No –onto→On | |
| 2 | fofun 6796 | . . . . . 6 ⊢ ( bday : No –onto→On → Fun bday ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Fun bday |
| 4 | funimaexg 6628 | . . . . 5 ⊢ ((Fun bday ∧ 𝐴 ∈ 𝑉) → ( bday “ 𝐴) ∈ V) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( bday “ 𝐴) ∈ V) |
| 6 | 5 | uniexd 7741 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ ( bday “ 𝐴) ∈ V) |
| 7 | imassrn 6063 | . . . . 5 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
| 8 | forn 6798 | . . . . . 6 ⊢ ( bday : No –onto→On → ran bday = On) | |
| 9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ ran bday = On |
| 10 | 7, 9 | sseqtri 4012 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ On |
| 11 | ssorduni 7778 | . . . 4 ⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Ord ∪ ( bday “ 𝐴) |
| 13 | 6, 12 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) |
| 14 | elon2 6368 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | |
| 15 | onsucb 7816 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ suc ∪ ( bday “ 𝐴) ∈ On) | |
| 16 | 14, 15 | bitr3i 277 | . 2 ⊢ ((Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V) ↔ suc ∪ ( bday “ 𝐴) ∈ On) |
| 17 | 13, 16 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ∪ cuni 4888 ran crn 5660 “ cima 5662 Ord word 6356 Oncon0 6357 suc csuc 6359 Fun wfun 6530 –onto→wfo 6534 No csur 27608 bday cbday 27610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-1o 8485 df-no 27611 df-bday 27613 |
| This theorem is referenced by: noetasuplem1 27702 noetainflem1 27706 |
| Copyright terms: Public domain | W3C validator |