| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayimaon | Structured version Visualization version GIF version | ||
| Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| bdayimaon | ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27611 | . . . . . 6 ⊢ bday : No –onto→On | |
| 2 | fofun 6731 | . . . . . 6 ⊢ ( bday : No –onto→On → Fun bday ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Fun bday |
| 4 | funimaexg 6563 | . . . . 5 ⊢ ((Fun bday ∧ 𝐴 ∈ 𝑉) → ( bday “ 𝐴) ∈ V) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( bday “ 𝐴) ∈ V) |
| 6 | 5 | uniexd 7670 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ ( bday “ 𝐴) ∈ V) |
| 7 | imassrn 6015 | . . . . 5 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
| 8 | forn 6733 | . . . . . 6 ⊢ ( bday : No –onto→On → ran bday = On) | |
| 9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ ran bday = On |
| 10 | 7, 9 | sseqtri 3978 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ On |
| 11 | ssorduni 7707 | . . . 4 ⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Ord ∪ ( bday “ 𝐴) |
| 13 | 6, 12 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) |
| 14 | elon2 6312 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | |
| 15 | onsucb 7742 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ suc ∪ ( bday “ 𝐴) ∈ On) | |
| 16 | 14, 15 | bitr3i 277 | . 2 ⊢ ((Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V) ↔ suc ∪ ( bday “ 𝐴) ∈ On) |
| 17 | 13, 16 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4854 ran crn 5612 “ cima 5614 Ord word 6300 Oncon0 6301 suc csuc 6303 Fun wfun 6470 –onto→wfo 6474 No csur 27573 bday cbday 27575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-suc 6307 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-1o 8380 df-no 27576 df-bday 27578 |
| This theorem is referenced by: noetasuplem1 27667 noetainflem1 27671 |
| Copyright terms: Public domain | W3C validator |