Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayimaon | Structured version Visualization version GIF version |
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) |
Ref | Expression |
---|---|
bdayimaon | ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 33523 | . . . . . 6 ⊢ bday : No –onto→On | |
2 | fofun 6593 | . . . . . 6 ⊢ ( bday : No –onto→On → Fun bday ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Fun bday |
4 | funimaexg 6425 | . . . . 5 ⊢ ((Fun bday ∧ 𝐴 ∈ 𝑉) → ( bday “ 𝐴) ∈ V) | |
5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( bday “ 𝐴) ∈ V) |
6 | 5 | uniexd 7486 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ ( bday “ 𝐴) ∈ V) |
7 | imassrn 5914 | . . . . 5 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
8 | forn 6595 | . . . . . 6 ⊢ ( bday : No –onto→On → ran bday = On) | |
9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ ran bday = On |
10 | 7, 9 | sseqtri 3913 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ On |
11 | ssorduni 7519 | . . . 4 ⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Ord ∪ ( bday “ 𝐴) |
13 | 6, 12 | jctil 523 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) |
14 | elon2 6183 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | |
15 | sucelon 7551 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ suc ∪ ( bday “ 𝐴) ∈ On) | |
16 | 14, 15 | bitr3i 280 | . 2 ⊢ ((Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V) ↔ suc ∪ ( bday “ 𝐴) ∈ On) |
17 | 13, 16 | sylib 221 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ⊆ wss 3843 ∪ cuni 4796 ran crn 5526 “ cima 5528 Ord word 6171 Oncon0 6172 suc csuc 6174 Fun wfun 6333 –onto→wfo 6337 No csur 33486 bday cbday 33488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-1o 8131 df-no 33489 df-bday 33491 |
This theorem is referenced by: noetasuplem1 33579 noetainflem1 33583 |
Copyright terms: Public domain | W3C validator |