Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayimaon Structured version   Visualization version   GIF version

Theorem bdayimaon 33310
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.)
Assertion
Ref Expression
bdayimaon (𝐴𝑉 → suc ( bday 𝐴) ∈ On)

Proof of Theorem bdayimaon
StepHypRef Expression
1 bdayfo 33295 . . . . . 6 bday : No onto→On
2 fofun 6566 . . . . . 6 ( bday : No onto→On → Fun bday )
31, 2ax-mp 5 . . . . 5 Fun bday
4 funimaexg 6410 . . . . 5 ((Fun bday 𝐴𝑉) → ( bday 𝐴) ∈ V)
53, 4mpan 689 . . . 4 (𝐴𝑉 → ( bday 𝐴) ∈ V)
65uniexd 7448 . . 3 (𝐴𝑉 ( bday 𝐴) ∈ V)
7 imassrn 5907 . . . . 5 ( bday 𝐴) ⊆ ran bday
8 forn 6568 . . . . . 6 ( bday : No onto→On → ran bday = On)
91, 8ax-mp 5 . . . . 5 ran bday = On
107, 9sseqtri 3951 . . . 4 ( bday 𝐴) ⊆ On
11 ssorduni 7480 . . . 4 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
1210, 11ax-mp 5 . . 3 Ord ( bday 𝐴)
136, 12jctil 523 . 2 (𝐴𝑉 → (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
14 elon2 6170 . . 3 ( ( bday 𝐴) ∈ On ↔ (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
15 sucelon 7512 . . 3 ( ( bday 𝐴) ∈ On ↔ suc ( bday 𝐴) ∈ On)
1614, 15bitr3i 280 . 2 ((Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V) ↔ suc ( bday 𝐴) ∈ On)
1713, 16sylib 221 1 (𝐴𝑉 → suc ( bday 𝐴) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881   cuni 4800  ran crn 5520  cima 5522  Ord word 6158  Oncon0 6159  suc csuc 6161  Fun wfun 6318  ontowfo 6322   No csur 33260   bday cbday 33262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1o 8085  df-no 33263  df-bday 33265
This theorem is referenced by:  noetalem1  33330
  Copyright terms: Public domain W3C validator