![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayimaon | Structured version Visualization version GIF version |
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.) |
Ref | Expression |
---|---|
bdayimaon | ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 27740 | . . . . . 6 ⊢ bday : No –onto→On | |
2 | fofun 6835 | . . . . . 6 ⊢ ( bday : No –onto→On → Fun bday ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ Fun bday |
4 | funimaexg 6664 | . . . . 5 ⊢ ((Fun bday ∧ 𝐴 ∈ 𝑉) → ( bday “ 𝐴) ∈ V) | |
5 | 3, 4 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( bday “ 𝐴) ∈ V) |
6 | 5 | uniexd 7777 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ ( bday “ 𝐴) ∈ V) |
7 | imassrn 6100 | . . . . 5 ⊢ ( bday “ 𝐴) ⊆ ran bday | |
8 | forn 6837 | . . . . . 6 ⊢ ( bday : No –onto→On → ran bday = On) | |
9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ ran bday = On |
10 | 7, 9 | sseqtri 4045 | . . . 4 ⊢ ( bday “ 𝐴) ⊆ On |
11 | ssorduni 7814 | . . . 4 ⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Ord ∪ ( bday “ 𝐴) |
13 | 6, 12 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) |
14 | elon2 6406 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ (Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V)) | |
15 | onsucb 7853 | . . 3 ⊢ (∪ ( bday “ 𝐴) ∈ On ↔ suc ∪ ( bday “ 𝐴) ∈ On) | |
16 | 14, 15 | bitr3i 277 | . 2 ⊢ ((Ord ∪ ( bday “ 𝐴) ∧ ∪ ( bday “ 𝐴) ∈ V) ↔ suc ∪ ( bday “ 𝐴) ∈ On) |
17 | 13, 16 | sylib 218 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ ( bday “ 𝐴) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 ran crn 5701 “ cima 5703 Ord word 6394 Oncon0 6395 suc csuc 6397 Fun wfun 6567 –onto→wfo 6571 No csur 27702 bday cbday 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-1o 8522 df-no 27705 df-bday 27707 |
This theorem is referenced by: noetasuplem1 27796 noetainflem1 27800 |
Copyright terms: Public domain | W3C validator |