MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayimaon Structured version   Visualization version   GIF version

Theorem bdayimaon 27621
Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011.)
Assertion
Ref Expression
bdayimaon (𝐴𝑉 → suc ( bday 𝐴) ∈ On)

Proof of Theorem bdayimaon
StepHypRef Expression
1 bdayfo 27605 . . . . . 6 bday : No onto→On
2 fofun 6741 . . . . . 6 ( bday : No onto→On → Fun bday )
31, 2ax-mp 5 . . . . 5 Fun bday
4 funimaexg 6573 . . . . 5 ((Fun bday 𝐴𝑉) → ( bday 𝐴) ∈ V)
53, 4mpan 690 . . . 4 (𝐴𝑉 → ( bday 𝐴) ∈ V)
65uniexd 7682 . . 3 (𝐴𝑉 ( bday 𝐴) ∈ V)
7 imassrn 6026 . . . . 5 ( bday 𝐴) ⊆ ran bday
8 forn 6743 . . . . . 6 ( bday : No onto→On → ran bday = On)
91, 8ax-mp 5 . . . . 5 ran bday = On
107, 9sseqtri 3986 . . . 4 ( bday 𝐴) ⊆ On
11 ssorduni 7719 . . . 4 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
1210, 11ax-mp 5 . . 3 Ord ( bday 𝐴)
136, 12jctil 519 . 2 (𝐴𝑉 → (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
14 elon2 6322 . . 3 ( ( bday 𝐴) ∈ On ↔ (Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V))
15 onsucb 7756 . . 3 ( ( bday 𝐴) ∈ On ↔ suc ( bday 𝐴) ∈ On)
1614, 15bitr3i 277 . 2 ((Ord ( bday 𝐴) ∧ ( bday 𝐴) ∈ V) ↔ suc ( bday 𝐴) ∈ On)
1713, 16sylib 218 1 (𝐴𝑉 → suc ( bday 𝐴) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905   cuni 4861  ran crn 5624  cima 5626  Ord word 6310  Oncon0 6311  suc csuc 6313  Fun wfun 6480  ontowfo 6484   No csur 27567   bday cbday 27569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-suc 6317  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-1o 8395  df-no 27570  df-bday 27572
This theorem is referenced by:  noetasuplem1  27661  noetainflem1  27665
  Copyright terms: Public domain W3C validator