![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omord2lim | Structured version Visualization version GIF version |
Description: Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
omord2lim | ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6429 | . . . . 5 ⊢ (Lim 𝐶 → Ord 𝐶) | |
2 | 1 | ad2antrl 727 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → Ord 𝐶) |
3 | ordelon 6393 | . . . 4 ⊢ ((Ord 𝐶 ∧ 𝐵 ∈ 𝐶) → 𝐵 ∈ On) | |
4 | 2, 3 | sylan 579 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ∈ 𝐶) → 𝐵 ∈ On) |
5 | elex 3490 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
6 | 1, 5 | anim12i 612 | . . . . 5 ⊢ ((Lim 𝐶 ∧ 𝐶 ∈ 𝑉) → (Ord 𝐶 ∧ 𝐶 ∈ V)) |
7 | 6 | ad2antlr 726 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ∈ 𝐶) → (Ord 𝐶 ∧ 𝐶 ∈ V)) |
8 | elon2 6380 | . . . 4 ⊢ (𝐶 ∈ On ↔ (Ord 𝐶 ∧ 𝐶 ∈ V)) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ∈ 𝐶) → 𝐶 ∈ On) |
10 | simplll 774 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ On) | |
11 | simpr 484 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ∈ 𝐶) → 𝐵 ∈ 𝐶) | |
12 | on0eln0 6425 | . . . . 5 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
13 | 12 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴) |
14 | 13 | ad2antrr 725 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ∈ 𝐶) → ∅ ∈ 𝐴) |
15 | omord 8589 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | |
16 | 15 | biimpa 476 | . . 3 ⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴)) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)) |
17 | 4, 9, 10, 11, 14, 16 | syl32anc 1376 | . 2 ⊢ ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) ∧ 𝐵 ∈ 𝐶) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)) |
18 | 17 | ex 412 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ∅c0 4323 Ord word 6368 Oncon0 6369 Lim wlim 6370 (class class class)co 7420 ·o comu 8485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-oadd 8491 df-omul 8492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |