Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omord2lim Structured version   Visualization version   GIF version

Theorem omord2lim 43289
Description: Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
omord2lim (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))

Proof of Theorem omord2lim
StepHypRef Expression
1 limord 6393 . . . . 5 (Lim 𝐶 → Ord 𝐶)
21ad2antrl 728 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) → Ord 𝐶)
3 ordelon 6356 . . . 4 ((Ord 𝐶𝐵𝐶) → 𝐵 ∈ On)
42, 3sylan 580 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵 ∈ On)
5 elex 3468 . . . . . 6 (𝐶𝑉𝐶 ∈ V)
61, 5anim12i 613 . . . . 5 ((Lim 𝐶𝐶𝑉) → (Ord 𝐶𝐶 ∈ V))
76ad2antlr 727 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → (Ord 𝐶𝐶 ∈ V))
8 elon2 6343 . . . 4 (𝐶 ∈ On ↔ (Ord 𝐶𝐶 ∈ V))
97, 8sylibr 234 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐶 ∈ On)
10 simplll 774 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐴 ∈ On)
11 simpr 484 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵𝐶)
12 on0eln0 6389 . . . . 5 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
1312biimpar 477 . . . 4 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
1413ad2antrr 726 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → ∅ ∈ 𝐴)
15 omord 8532 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐵𝐶 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
1615biimpa 476 . . 3 (((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐵𝐶 ∧ ∅ ∈ 𝐴)) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))
174, 9, 10, 11, 14, 16syl32anc 1380 . 2 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))
1817ex 412 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3447  c0 4296  Ord word 6331  Oncon0 6332  Lim wlim 6333  (class class class)co 7387   ·o comu 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-oadd 8438  df-omul 8439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator