Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omord2lim Structured version   Visualization version   GIF version

Theorem omord2lim 42729
Description: Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
omord2lim (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))

Proof of Theorem omord2lim
StepHypRef Expression
1 limord 6429 . . . . 5 (Lim 𝐶 → Ord 𝐶)
21ad2antrl 727 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) → Ord 𝐶)
3 ordelon 6393 . . . 4 ((Ord 𝐶𝐵𝐶) → 𝐵 ∈ On)
42, 3sylan 579 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵 ∈ On)
5 elex 3490 . . . . . 6 (𝐶𝑉𝐶 ∈ V)
61, 5anim12i 612 . . . . 5 ((Lim 𝐶𝐶𝑉) → (Ord 𝐶𝐶 ∈ V))
76ad2antlr 726 . . . 4 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → (Ord 𝐶𝐶 ∈ V))
8 elon2 6380 . . . 4 (𝐶 ∈ On ↔ (Ord 𝐶𝐶 ∈ V))
97, 8sylibr 233 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐶 ∈ On)
10 simplll 774 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐴 ∈ On)
11 simpr 484 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → 𝐵𝐶)
12 on0eln0 6425 . . . . 5 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
1312biimpar 477 . . . 4 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
1413ad2antrr 725 . . 3 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → ∅ ∈ 𝐴)
15 omord 8589 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐵𝐶 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
1615biimpa 476 . . 3 (((𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐵𝐶 ∧ ∅ ∈ 𝐴)) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))
174, 9, 10, 11, 14, 16syl32anc 1376 . 2 ((((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) ∧ 𝐵𝐶) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))
1817ex 412 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶𝐶𝑉)) → (𝐵𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2099  wne 2937  Vcvv 3471  c0 4323  Ord word 6368  Oncon0 6369  Lim wlim 6370  (class class class)co 7420   ·o comu 8485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-oadd 8491  df-omul 8492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator