MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem5 Structured version   Visualization version   GIF version

Theorem ptcmplem5 23994
Description: Lemma for ptcmp 23996. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem5 (𝜑 → (∏t𝐹) ∈ Comp)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem5
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.5 . . 3 (𝜑𝑋 ∈ (UFL ∩ dom card))
21elin1d 4179 . 2 (𝜑𝑋 ∈ UFL)
3 ptcmp.1 . . . 4 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
4 ptcmp.2 . . . 4 𝑋 = X𝑛𝐴 (𝐹𝑛)
5 ptcmp.3 . . . 4 (𝜑𝐴𝑉)
6 ptcmp.4 . . . 4 (𝜑𝐹:𝐴⟶Comp)
73, 4, 5, 6, 1ptcmplem1 23990 . . 3 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
87simpld 494 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
97simprd 495 . 2 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
10 elpwi 4582 . . . . . 6 (𝑦 ∈ 𝒫 ran 𝑆𝑦 ⊆ ran 𝑆)
115ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝐴𝑉)
126ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝐹:𝐴⟶Comp)
131ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑋 ∈ (UFL ∩ dom card))
14 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑦 ⊆ ran 𝑆)
15 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑋 = 𝑦)
16 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
17 imaeq2 6043 . . . . . . . . . . 11 (𝑧 = 𝑢 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1817eleq1d 2819 . . . . . . . . . 10 (𝑧 = 𝑢 → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) ∈ 𝑦 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑦))
1918cbvrabv 3426 . . . . . . . . 9 {𝑧 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) ∈ 𝑦} = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑦}
203, 4, 11, 12, 13, 14, 15, 16, 19ptcmplem4 23993 . . . . . . . 8 ¬ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
21 iman 401 . . . . . . . 8 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) ↔ ¬ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2220, 21mpbir 231 . . . . . . 7 ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
2322expr 456 . . . . . 6 ((𝜑𝑦 ⊆ ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2410, 23sylan2 593 . . . . 5 ((𝜑𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2524adantlr 715 . . . 4 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
26 velpw 4580 . . . . . . 7 (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ↔ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋}))
27 eldif 3936 . . . . . . . 8 (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) ↔ (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆))
28 elpwunsn 4660 . . . . . . . 8 (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) → 𝑋𝑦)
2927, 28sylbir 235 . . . . . . 7 ((𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
3026, 29sylanbr 582 . . . . . 6 ((𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
3130adantll 714 . . . . 5 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
32 snssi 4784 . . . . . . . . 9 (𝑋𝑦 → {𝑋} ⊆ 𝑦)
3332adantl 481 . . . . . . . 8 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ⊆ 𝑦)
34 snfi 9057 . . . . . . . 8 {𝑋} ∈ Fin
35 elfpw 9366 . . . . . . . 8 ({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ↔ ({𝑋} ⊆ 𝑦 ∧ {𝑋} ∈ Fin))
3633, 34, 35sylanblrc 590 . . . . . . 7 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ∈ (𝒫 𝑦 ∩ Fin))
37 unisng 4901 . . . . . . . . 9 (𝑋𝑦 {𝑋} = 𝑋)
3837eqcomd 2741 . . . . . . . 8 (𝑋𝑦𝑋 = {𝑋})
3938adantl 481 . . . . . . 7 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → 𝑋 = {𝑋})
40 unieq 4894 . . . . . . . 8 (𝑧 = {𝑋} → 𝑧 = {𝑋})
4140rspceeqv 3624 . . . . . . 7 (({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑋 = {𝑋}) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
4236, 39, 41syl2anc 584 . . . . . 6 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
4342a1d 25 . . . . 5 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4431, 43syldan 591 . . . 4 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4525, 44pm2.61dan 812 . . 3 ((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4645impr 454 . 2 ((𝜑 ∧ (𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ 𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
472, 8, 9, 46alexsub 23983 1 (𝜑 → (∏t𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  cdif 3923  cun 3924  cin 3925  wss 3926  𝒫 cpw 4575  {csn 4601   cuni 4883  cmpt 5201  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657  wf 6527  cfv 6531  cmpo 7407  Xcixp 8911  Fincfn 8959  ficfi 9422  cardccrd 9949  topGenctg 17451  tcpt 17452  Compccmp 23324  UFLcufl 23838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-fin 8963  df-fi 9423  df-wdom 9579  df-card 9953  df-acn 9956  df-topgen 17457  df-pt 17458  df-fbas 21312  df-fg 21313  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cmp 23325  df-fil 23784  df-ufil 23839  df-ufl 23840  df-flim 23877  df-fcls 23879
This theorem is referenced by:  ptcmpg  23995
  Copyright terms: Public domain W3C validator