Step | Hyp | Ref
| Expression |
1 | | ptcmp.5 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom
card)) |
2 | 1 | elin1d 4136 |
. 2
⊢ (𝜑 → 𝑋 ∈ UFL) |
3 | | ptcmp.1 |
. . . 4
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
4 | | ptcmp.2 |
. . . 4
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
5 | | ptcmp.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
6 | | ptcmp.4 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶Comp) |
7 | 3, 4, 5, 6, 1 | ptcmplem1 23184 |
. . 3
⊢ (𝜑 → (𝑋 = ∪ (ran 𝑆 ∪ {𝑋}) ∧ (∏t‘𝐹) = (topGen‘(fi‘(ran
𝑆 ∪ {𝑋}))))) |
8 | 7 | simpld 494 |
. 2
⊢ (𝜑 → 𝑋 = ∪ (ran 𝑆 ∪ {𝑋})) |
9 | 7 | simprd 495 |
. 2
⊢ (𝜑 →
(∏t‘𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))) |
10 | | elpwi 4547 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 ran 𝑆 → 𝑦 ⊆ ran 𝑆) |
11 | 5 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → 𝐴 ∈ 𝑉) |
12 | 6 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → 𝐹:𝐴⟶Comp) |
13 | 1 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → 𝑋 ∈ (UFL ∩ dom
card)) |
14 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → 𝑦 ⊆ ran 𝑆) |
15 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → 𝑋 = ∪ 𝑦) |
16 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) |
17 | | imaeq2 5962 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑧) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
18 | 17 | eleq1d 2824 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → ((◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑧) ∈ 𝑦 ↔ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑦)) |
19 | 18 | cbvrabv 3424 |
. . . . . . . . 9
⊢ {𝑧 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑧) ∈ 𝑦} = {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑦} |
20 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | ptcmplem4 23187 |
. . . . . . . 8
⊢ ¬
((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) |
21 | | iman 401 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) ↔ ¬ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
22 | 20, 21 | mpbir 230 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) |
23 | 22 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ⊆ ran 𝑆) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
24 | 10, 23 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
25 | 24 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
26 | | velpw 4543 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ↔ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) |
27 | | eldif 3901 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) ↔ (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆)) |
28 | | elpwunsn 4624 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) → 𝑋 ∈ 𝑦) |
29 | 27, 28 | sylbir 234 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋 ∈ 𝑦) |
30 | 26, 29 | sylanbr 581 |
. . . . . 6
⊢ ((𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋 ∈ 𝑦) |
31 | 30 | adantll 710 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋 ∈ 𝑦) |
32 | | snssi 4746 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑦 → {𝑋} ⊆ 𝑦) |
33 | 32 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋 ∈ 𝑦) → {𝑋} ⊆ 𝑦) |
34 | | snfi 8804 |
. . . . . . . 8
⊢ {𝑋} ∈ Fin |
35 | | elfpw 9082 |
. . . . . . . 8
⊢ ({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ↔ ({𝑋} ⊆ 𝑦 ∧ {𝑋} ∈ Fin)) |
36 | 33, 34, 35 | sylanblrc 589 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋 ∈ 𝑦) → {𝑋} ∈ (𝒫 𝑦 ∩ Fin)) |
37 | | unisng 4865 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑦 → ∪ {𝑋} = 𝑋) |
38 | 37 | eqcomd 2745 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑦 → 𝑋 = ∪ {𝑋}) |
39 | 38 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋 ∈ 𝑦) → 𝑋 = ∪ {𝑋}) |
40 | | unieq 4855 |
. . . . . . . 8
⊢ (𝑧 = {𝑋} → ∪ 𝑧 = ∪
{𝑋}) |
41 | 40 | rspceeqv 3575 |
. . . . . . 7
⊢ (({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑋 = ∪
{𝑋}) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) |
42 | 36, 39, 41 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋 ∈ 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) |
43 | 42 | a1d 25 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋 ∈ 𝑦) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
44 | 31, 43 | syldan 590 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
45 | 25, 44 | pm2.61dan 809 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
46 | 45 | impr 454 |
. 2
⊢ ((𝜑 ∧ (𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ 𝑋 = ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) |
47 | 2, 8, 9, 46 | alexsub 23177 |
1
⊢ (𝜑 →
(∏t‘𝐹) ∈ Comp) |