Step | Hyp | Ref
| Expression |
1 | | ptcmp.5 |
. . 3
β’ (π β π β (UFL β© dom
card)) |
2 | 1 | elin1d 4199 |
. 2
β’ (π β π β UFL) |
3 | | ptcmp.1 |
. . . 4
β’ π = (π β π΄, π’ β (πΉβπ) β¦ (β‘(π€ β π β¦ (π€βπ)) β π’)) |
4 | | ptcmp.2 |
. . . 4
β’ π = Xπ β π΄ βͺ (πΉβπ) |
5 | | ptcmp.3 |
. . . 4
β’ (π β π΄ β π) |
6 | | ptcmp.4 |
. . . 4
β’ (π β πΉ:π΄βΆComp) |
7 | 3, 4, 5, 6, 1 | ptcmplem1 23556 |
. . 3
β’ (π β (π = βͺ (ran π βͺ {π}) β§ (βtβπΉ) = (topGenβ(fiβ(ran
π βͺ {π}))))) |
8 | 7 | simpld 496 |
. 2
β’ (π β π = βͺ (ran π βͺ {π})) |
9 | 7 | simprd 497 |
. 2
β’ (π β
(βtβπΉ) = (topGenβ(fiβ(ran π βͺ {π})))) |
10 | | elpwi 4610 |
. . . . . 6
β’ (π¦ β π« ran π β π¦ β ran π) |
11 | 5 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) β π΄ β π) |
12 | 6 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) β πΉ:π΄βΆComp) |
13 | 1 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) β π β (UFL β© dom
card)) |
14 | | simplrl 776 |
. . . . . . . . 9
β’ (((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) β π¦ β ran π) |
15 | | simplrr 777 |
. . . . . . . . 9
β’ (((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) β π = βͺ π¦) |
16 | | simpr 486 |
. . . . . . . . 9
β’ (((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) β Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) |
17 | | imaeq2 6056 |
. . . . . . . . . . 11
β’ (π§ = π’ β (β‘(π€ β π β¦ (π€βπ)) β π§) = (β‘(π€ β π β¦ (π€βπ)) β π’)) |
18 | 17 | eleq1d 2819 |
. . . . . . . . . 10
β’ (π§ = π’ β ((β‘(π€ β π β¦ (π€βπ)) β π§) β π¦ β (β‘(π€ β π β¦ (π€βπ)) β π’) β π¦)) |
19 | 18 | cbvrabv 3443 |
. . . . . . . . 9
β’ {π§ β (πΉβπ) β£ (β‘(π€ β π β¦ (π€βπ)) β π§) β π¦} = {π’ β (πΉβπ) β£ (β‘(π€ β π β¦ (π€βπ)) β π’) β π¦} |
20 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | ptcmplem4 23559 |
. . . . . . . 8
β’ Β¬
((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§) |
21 | | iman 403 |
. . . . . . . 8
β’ (((π β§ (π¦ β ran π β§ π = βͺ π¦)) β βπ§ β (π« π¦ β© Fin)π = βͺ π§) β Β¬ ((π β§ (π¦ β ran π β§ π = βͺ π¦)) β§ Β¬ βπ§ β (π« π¦ β© Fin)π = βͺ π§)) |
22 | 20, 21 | mpbir 230 |
. . . . . . 7
β’ ((π β§ (π¦ β ran π β§ π = βͺ π¦)) β βπ§ β (π« π¦ β© Fin)π = βͺ π§) |
23 | 22 | expr 458 |
. . . . . 6
β’ ((π β§ π¦ β ran π) β (π = βͺ π¦ β βπ§ β (π« π¦ β© Fin)π = βͺ π§)) |
24 | 10, 23 | sylan2 594 |
. . . . 5
β’ ((π β§ π¦ β π« ran π) β (π = βͺ π¦ β βπ§ β (π« π¦ β© Fin)π = βͺ π§)) |
25 | 24 | adantlr 714 |
. . . 4
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ π¦ β π« ran π) β (π = βͺ π¦ β βπ§ β (π« π¦ β© Fin)π = βͺ π§)) |
26 | | velpw 4608 |
. . . . . . 7
β’ (π¦ β π« (ran π βͺ {π}) β π¦ β (ran π βͺ {π})) |
27 | | eldif 3959 |
. . . . . . . 8
β’ (π¦ β (π« (ran π βͺ {π}) β π« ran π) β (π¦ β π« (ran π βͺ {π}) β§ Β¬ π¦ β π« ran π)) |
28 | | elpwunsn 4688 |
. . . . . . . 8
β’ (π¦ β (π« (ran π βͺ {π}) β π« ran π) β π β π¦) |
29 | 27, 28 | sylbir 234 |
. . . . . . 7
β’ ((π¦ β π« (ran π βͺ {π}) β§ Β¬ π¦ β π« ran π) β π β π¦) |
30 | 26, 29 | sylanbr 583 |
. . . . . 6
β’ ((π¦ β (ran π βͺ {π}) β§ Β¬ π¦ β π« ran π) β π β π¦) |
31 | 30 | adantll 713 |
. . . . 5
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ Β¬ π¦ β π« ran π) β π β π¦) |
32 | | snssi 4812 |
. . . . . . . . 9
β’ (π β π¦ β {π} β π¦) |
33 | 32 | adantl 483 |
. . . . . . . 8
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ π β π¦) β {π} β π¦) |
34 | | snfi 9044 |
. . . . . . . 8
β’ {π} β Fin |
35 | | elfpw 9354 |
. . . . . . . 8
β’ ({π} β (π« π¦ β© Fin) β ({π} β π¦ β§ {π} β Fin)) |
36 | 33, 34, 35 | sylanblrc 591 |
. . . . . . 7
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ π β π¦) β {π} β (π« π¦ β© Fin)) |
37 | | unisng 4930 |
. . . . . . . . 9
β’ (π β π¦ β βͺ {π} = π) |
38 | 37 | eqcomd 2739 |
. . . . . . . 8
β’ (π β π¦ β π = βͺ {π}) |
39 | 38 | adantl 483 |
. . . . . . 7
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ π β π¦) β π = βͺ {π}) |
40 | | unieq 4920 |
. . . . . . . 8
β’ (π§ = {π} β βͺ π§ = βͺ
{π}) |
41 | 40 | rspceeqv 3634 |
. . . . . . 7
β’ (({π} β (π« π¦ β© Fin) β§ π = βͺ
{π}) β βπ§ β (π« π¦ β© Fin)π = βͺ π§) |
42 | 36, 39, 41 | syl2anc 585 |
. . . . . 6
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ π β π¦) β βπ§ β (π« π¦ β© Fin)π = βͺ π§) |
43 | 42 | a1d 25 |
. . . . 5
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ π β π¦) β (π = βͺ π¦ β βπ§ β (π« π¦ β© Fin)π = βͺ π§)) |
44 | 31, 43 | syldan 592 |
. . . 4
β’ (((π β§ π¦ β (ran π βͺ {π})) β§ Β¬ π¦ β π« ran π) β (π = βͺ π¦ β βπ§ β (π« π¦ β© Fin)π = βͺ π§)) |
45 | 25, 44 | pm2.61dan 812 |
. . 3
β’ ((π β§ π¦ β (ran π βͺ {π})) β (π = βͺ π¦ β βπ§ β (π« π¦ β© Fin)π = βͺ π§)) |
46 | 45 | impr 456 |
. 2
β’ ((π β§ (π¦ β (ran π βͺ {π}) β§ π = βͺ π¦)) β βπ§ β (π« π¦ β© Fin)π = βͺ π§) |
47 | 2, 8, 9, 46 | alexsub 23549 |
1
β’ (π β
(βtβπΉ) β Comp) |