Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefsymrels3 Structured version   Visualization version   GIF version

Theorem elrefsymrels3 38566
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38585) can use the 𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) version of dfrefrels3 38510, cf. the comment of dfrefrel3 38512. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
elrefsymrels3 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrefsymrels3
StepHypRef Expression
1 elrefsymrels2 38565 . 2 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ))
2 idrefALT 6139 . . . 4 (( I ↾ dom 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)
3 cnvsym 6140 . . . 4 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
42, 3anbi12i 628 . . 3 ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
54anbi1i 624 . 2 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ 𝑅 ∈ Rels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels ))
61, 5bitri 275 1 (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537  wcel 2108  wral 3061  cin 3965  wss 3966   class class class wbr 5151   I cid 5586  ccnv 5692  dom cdm 5693  cres 5695   Rels crels 38178   RefRels crefrels 38181   SymRels csymrels 38187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-rels 38481  df-ssr 38494  df-refs 38506  df-refrels 38507  df-syms 38538  df-symrels 38539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator