Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefsymrels3 | Structured version Visualization version GIF version |
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 36702) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrels3 36632, cf. the comment of dfrefrel3 36634. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
elrefsymrels3 | ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrefsymrels2 36683 | . 2 ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | |
2 | idrefALT 6018 | . . . 4 ⊢ (( I ↾ dom 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥) | |
3 | cnvsym 6019 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
4 | 2, 3 | anbi12i 627 | . . 3 ⊢ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ (∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
5 | 4 | anbi1i 624 | . 2 ⊢ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) |
6 | 1, 5 | bitri 274 | 1 ⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 I cid 5488 ◡ccnv 5588 dom cdm 5589 ↾ cres 5591 Rels crels 36335 RefRels crefrels 36338 SymRels csymrels 36344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-rels 36603 df-ssr 36616 df-refs 36628 df-refrels 36629 df-syms 36656 df-symrels 36657 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |