Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmpt1sf Structured version   Visualization version   GIF version

Theorem elrnmpt1sf 45096
Description: Elementhood in an image set. Same as elrnmpt1s 5982, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmpt1sf.1 𝑥𝐶
elrnmpt1sf.2 𝐹 = (𝑥𝐴𝐵)
elrnmpt1sf.3 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1sf ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1sf
StepHypRef Expression
1 eqid 2740 . . 3 𝐶 = 𝐶
2 elrnmpt1sf.1 . . . . 5 𝑥𝐶
32, 2nfeq 2922 . . . 4 𝑥 𝐶 = 𝐶
4 elrnmpt1sf.3 . . . . 5 (𝑥 = 𝐷𝐵 = 𝐶)
54eqeq2d 2751 . . . 4 (𝑥 = 𝐷 → (𝐶 = 𝐵𝐶 = 𝐶))
63, 5rspce 3624 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
71, 6mpan2 690 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
8 elrnmpt1sf.2 . . . 4 𝐹 = (𝑥𝐴𝐵)
92, 8elrnmptf 45088 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
109biimparc 479 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
117, 10sylan 579 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wnfc 2893  wrex 3076  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  sge0f1o  46303
  Copyright terms: Public domain W3C validator