Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmpt1sf Structured version   Visualization version   GIF version

Theorem elrnmpt1sf 44186
Description: Elementhood in an image set. Same as elrnmpt1s 5955, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmpt1sf.1 𝑥𝐶
elrnmpt1sf.2 𝐹 = (𝑥𝐴𝐵)
elrnmpt1sf.3 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1sf ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1sf
StepHypRef Expression
1 eqid 2730 . . 3 𝐶 = 𝐶
2 elrnmpt1sf.1 . . . . 5 𝑥𝐶
32, 2nfeq 2914 . . . 4 𝑥 𝐶 = 𝐶
4 elrnmpt1sf.3 . . . . 5 (𝑥 = 𝐷𝐵 = 𝐶)
54eqeq2d 2741 . . . 4 (𝑥 = 𝐷 → (𝐶 = 𝐵𝐶 = 𝐶))
63, 5rspce 3600 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
71, 6mpan2 687 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
8 elrnmpt1sf.2 . . . 4 𝐹 = (𝑥𝐴𝐵)
92, 8elrnmptf 44178 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
109biimparc 478 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
117, 10sylan 578 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wnfc 2881  wrex 3068  cmpt 5230  ran crn 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-mpt 5231  df-cnv 5683  df-dm 5685  df-rn 5686
This theorem is referenced by:  sge0f1o  45396
  Copyright terms: Public domain W3C validator