Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnmpt1sf | Structured version Visualization version GIF version |
Description: Elementhood in an image set. Same as elrnmpt1s 5863, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elrnmpt1sf.1 | ⊢ Ⅎ𝑥𝐶 |
elrnmpt1sf.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpt1sf.3 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
elrnmpt1sf | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ 𝐶 = 𝐶 | |
2 | elrnmpt1sf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2, 2 | nfeq 2921 | . . . 4 ⊢ Ⅎ𝑥 𝐶 = 𝐶 |
4 | elrnmpt1sf.3 | . . . . 5 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
5 | 4 | eqeq2d 2750 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐶 = 𝐵 ↔ 𝐶 = 𝐶)) |
6 | 3, 5 | rspce 3548 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
7 | 1, 6 | mpan2 687 | . 2 ⊢ (𝐷 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
8 | elrnmpt1sf.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | 2, 8 | elrnmptf 42671 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
10 | 9 | biimparc 479 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
11 | 7, 10 | sylan 579 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Ⅎwnfc 2888 ∃wrex 3066 ↦ cmpt 5161 ran crn 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: sge0f1o 43874 |
Copyright terms: Public domain | W3C validator |