![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnmpt1sf | Structured version Visualization version GIF version |
Description: Elementhood in an image set. Same as elrnmpt1s 5577, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elrnmpt1sf.1 | ⊢ Ⅎ𝑥𝐶 |
elrnmpt1sf.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpt1sf.3 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
elrnmpt1sf | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . 3 ⊢ 𝐶 = 𝐶 | |
2 | 1 | nfth 1897 | . . . 4 ⊢ Ⅎ𝑥 𝐶 = 𝐶 |
3 | elrnmpt1sf.3 | . . . . 5 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
4 | 3 | eqeq2d 2809 | . . . 4 ⊢ (𝑥 = 𝐷 → (𝐶 = 𝐵 ↔ 𝐶 = 𝐶)) |
5 | 2, 4 | rspce 3492 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
6 | 1, 5 | mpan2 683 | . 2 ⊢ (𝐷 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
7 | elrnmpt1sf.1 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
8 | elrnmpt1sf.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | 7, 8 | elrnmptf 40117 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
10 | 9 | biimparc 472 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
11 | 6, 10 | sylan 576 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Ⅎwnfc 2928 ∃wrex 3090 ↦ cmpt 4922 ran crn 5313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-mpt 4923 df-cnv 5320 df-dm 5322 df-rn 5323 |
This theorem is referenced by: sge0f1o 41338 |
Copyright terms: Public domain | W3C validator |