Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmpt1sf Structured version   Visualization version   GIF version

Theorem elrnmpt1sf 42680
Description: Elementhood in an image set. Same as elrnmpt1s 5863, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmpt1sf.1 𝑥𝐶
elrnmpt1sf.2 𝐹 = (𝑥𝐴𝐵)
elrnmpt1sf.3 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1sf ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1sf
StepHypRef Expression
1 eqid 2739 . . 3 𝐶 = 𝐶
2 elrnmpt1sf.1 . . . . 5 𝑥𝐶
32, 2nfeq 2921 . . . 4 𝑥 𝐶 = 𝐶
4 elrnmpt1sf.3 . . . . 5 (𝑥 = 𝐷𝐵 = 𝐶)
54eqeq2d 2750 . . . 4 (𝑥 = 𝐷 → (𝐶 = 𝐵𝐶 = 𝐶))
63, 5rspce 3548 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
71, 6mpan2 687 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
8 elrnmpt1sf.2 . . . 4 𝐹 = (𝑥𝐴𝐵)
92, 8elrnmptf 42671 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
109biimparc 479 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
117, 10sylan 579 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wnfc 2888  wrex 3066  cmpt 5161  ran crn 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-mpt 5162  df-cnv 5596  df-dm 5598  df-rn 5599
This theorem is referenced by:  sge0f1o  43874
  Copyright terms: Public domain W3C validator