Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssrn | Structured version Visualization version GIF version |
Description: Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnmptssrn.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rnmptssrn.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐶 𝐵 = 𝐷) |
Ref | Expression |
---|---|
rnmptssrn | ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (𝑦 ∈ 𝐶 ↦ 𝐷) = (𝑦 ∈ 𝐶 ↦ 𝐷) | |
2 | rnmptssrn.y | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐶 𝐵 = 𝐷) | |
3 | rnmptssrn.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
4 | 1, 2, 3 | elrnmptd 5859 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) |
5 | 4 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) |
6 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | rnmptss 6978 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ ran (𝑦 ∈ 𝐶 ↦ 𝐷) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) |
8 | 5, 7 | syl 17 | 1 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: sge0f1o 43810 |
Copyright terms: Public domain | W3C validator |