Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssrn Structured version   Visualization version   GIF version

Theorem rnmptssrn 42608
Description: Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnmptssrn.b ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmptssrn.y ((𝜑𝑥𝐴) → ∃𝑦𝐶 𝐵 = 𝐷)
Assertion
Ref Expression
rnmptssrn (𝜑 → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rnmptssrn
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑦𝐶𝐷) = (𝑦𝐶𝐷)
2 rnmptssrn.y . . . 4 ((𝜑𝑥𝐴) → ∃𝑦𝐶 𝐵 = 𝐷)
3 rnmptssrn.b . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
41, 2, 3elrnmptd 5859 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑦𝐶𝐷))
54ralrimiva 3107 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ran (𝑦𝐶𝐷))
6 eqid 2738 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76rnmptss 6978 . 2 (∀𝑥𝐴 𝐵 ∈ ran (𝑦𝐶𝐷) → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
85, 7syl 17 1 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  cmpt 5153  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  sge0f1o  43810
  Copyright terms: Public domain W3C validator