Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssrn Structured version   Visualization version   GIF version

Theorem rnmptssrn 42719
Description: Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnmptssrn.b ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmptssrn.y ((𝜑𝑥𝐴) → ∃𝑦𝐶 𝐵 = 𝐷)
Assertion
Ref Expression
rnmptssrn (𝜑 → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rnmptssrn
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑦𝐶𝐷) = (𝑦𝐶𝐷)
2 rnmptssrn.y . . . 4 ((𝜑𝑥𝐴) → ∃𝑦𝐶 𝐵 = 𝐷)
3 rnmptssrn.b . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
41, 2, 3elrnmptd 5870 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑦𝐶𝐷))
54ralrimiva 3103 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ran (𝑦𝐶𝐷))
6 eqid 2738 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76rnmptss 6996 . 2 (∀𝑥𝐴 𝐵 ∈ ran (𝑦𝐶𝐷) → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
85, 7syl 17 1 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  cmpt 5157  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  sge0f1o  43920
  Copyright terms: Public domain W3C validator