Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssrn Structured version   Visualization version   GIF version

Theorem rnmptssrn 45091
Description: Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnmptssrn.b ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmptssrn.y ((𝜑𝑥𝐴) → ∃𝑦𝐶 𝐵 = 𝐷)
Assertion
Ref Expression
rnmptssrn (𝜑 → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rnmptssrn
StepHypRef Expression
1 eqid 2740 . . . 4 (𝑦𝐶𝐷) = (𝑦𝐶𝐷)
2 rnmptssrn.y . . . 4 ((𝜑𝑥𝐴) → ∃𝑦𝐶 𝐵 = 𝐷)
3 rnmptssrn.b . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
41, 2, 3elrnmptd 5988 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑦𝐶𝐷))
54ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ran (𝑦𝐶𝐷))
6 eqid 2740 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76rnmptss 7159 . 2 (∀𝑥𝐴 𝐵 ∈ ran (𝑦𝐶𝐷) → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
85, 7syl 17 1 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ran (𝑦𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6577  df-fn 6578  df-f 6579
This theorem is referenced by:  sge0f1o  46305
  Copyright terms: Public domain W3C validator