Step | Hyp | Ref
| Expression |
1 | | dissnref.c |
. . 3
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} |
2 | 1 | unieqi 4849 |
. 2
⊢ ∪ 𝐶 =
∪ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} |
3 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ 𝑢) |
4 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥}) |
5 | 3, 4 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ {𝑥}) |
6 | 5 | exlimiv 1934 |
. . . . . . 7
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ {𝑥}) |
7 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥} = {𝑥} |
8 | | snex 5349 |
. . . . . . . . 9
⊢ {𝑥} ∈ V |
9 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑢 = {𝑥} → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ {𝑥})) |
10 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑢 = {𝑥} → (𝑢 = {𝑥} ↔ {𝑥} = {𝑥})) |
11 | 9, 10 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑢 = {𝑥} → ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ (𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥}))) |
12 | 8, 11 | spcev 3535 |
. . . . . . . 8
⊢ ((𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥}) → ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
13 | 7, 12 | mpan2 687 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥} → ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
14 | 6, 13 | impbii 208 |
. . . . . 6
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ 𝑦 ∈ {𝑥}) |
15 | | velsn 4574 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) |
16 | | equcom 2022 |
. . . . . 6
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
17 | 14, 15, 16 | 3bitri 296 |
. . . . 5
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ 𝑥 = 𝑦) |
18 | 17 | rexbii 3177 |
. . . 4
⊢
(∃𝑥 ∈
𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑥 ∈ 𝑋 𝑥 = 𝑦) |
19 | | r19.42v 3276 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ (𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) |
20 | 19 | exbii 1851 |
. . . . 5
⊢
(∃𝑢∃𝑥 ∈ 𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) |
21 | | rexcom4 3179 |
. . . . 5
⊢
(∃𝑥 ∈
𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑢∃𝑥 ∈ 𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
22 | | eluniab 4851 |
. . . . 5
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) |
23 | 20, 21, 22 | 3bitr4ri 303 |
. . . 4
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ ∃𝑥 ∈ 𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
24 | | risset 3193 |
. . . 4
⊢ (𝑦 ∈ 𝑋 ↔ ∃𝑥 ∈ 𝑋 𝑥 = 𝑦) |
25 | 18, 23, 24 | 3bitr4i 302 |
. . 3
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ 𝑦 ∈ 𝑋) |
26 | 25 | eqriv 2735 |
. 2
⊢ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} = 𝑋 |
27 | 2, 26 | eqtr2i 2767 |
1
⊢ 𝑋 = ∪
𝐶 |