| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dissnref.c | . . 3
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} | 
| 2 | 1 | unieqi 4919 | . 2
⊢ ∪ 𝐶 =
∪ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} | 
| 3 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ 𝑢) | 
| 4 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥}) | 
| 5 | 3, 4 | eleqtrd 2843 | . . . . . . . 8
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ {𝑥}) | 
| 6 | 5 | exlimiv 1930 | . . . . . . 7
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ {𝑥}) | 
| 7 |  | eqid 2737 | . . . . . . . 8
⊢ {𝑥} = {𝑥} | 
| 8 |  | vsnex 5434 | . . . . . . . . 9
⊢ {𝑥} ∈ V | 
| 9 |  | eleq2 2830 | . . . . . . . . . 10
⊢ (𝑢 = {𝑥} → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ {𝑥})) | 
| 10 |  | eqeq1 2741 | . . . . . . . . . 10
⊢ (𝑢 = {𝑥} → (𝑢 = {𝑥} ↔ {𝑥} = {𝑥})) | 
| 11 | 9, 10 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑢 = {𝑥} → ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ (𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥}))) | 
| 12 | 8, 11 | spcev 3606 | . . . . . . . 8
⊢ ((𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥}) → ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) | 
| 13 | 7, 12 | mpan2 691 | . . . . . . 7
⊢ (𝑦 ∈ {𝑥} → ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) | 
| 14 | 6, 13 | impbii 209 | . . . . . 6
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ 𝑦 ∈ {𝑥}) | 
| 15 |  | velsn 4642 | . . . . . 6
⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | 
| 16 |  | equcom 2017 | . . . . . 6
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | 
| 17 | 14, 15, 16 | 3bitri 297 | . . . . 5
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ 𝑥 = 𝑦) | 
| 18 | 17 | rexbii 3094 | . . . 4
⊢
(∃𝑥 ∈
𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑥 ∈ 𝑋 𝑥 = 𝑦) | 
| 19 |  | r19.42v 3191 | . . . . . 6
⊢
(∃𝑥 ∈
𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ (𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) | 
| 20 | 19 | exbii 1848 | . . . . 5
⊢
(∃𝑢∃𝑥 ∈ 𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) | 
| 21 |  | rexcom4 3288 | . . . . 5
⊢
(∃𝑥 ∈
𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑢∃𝑥 ∈ 𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) | 
| 22 |  | eluniab 4921 | . . . . 5
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) | 
| 23 | 20, 21, 22 | 3bitr4ri 304 | . . . 4
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ ∃𝑥 ∈ 𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) | 
| 24 |  | risset 3233 | . . . 4
⊢ (𝑦 ∈ 𝑋 ↔ ∃𝑥 ∈ 𝑋 𝑥 = 𝑦) | 
| 25 | 18, 23, 24 | 3bitr4i 303 | . . 3
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ 𝑦 ∈ 𝑋) | 
| 26 | 25 | eqriv 2734 | . 2
⊢ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} = 𝑋 | 
| 27 | 2, 26 | eqtr2i 2766 | 1
⊢ 𝑋 = ∪
𝐶 |