| Step | Hyp | Ref
| Expression |
| 1 | | dissnref.c |
. . 3
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} |
| 2 | 1 | unieqi 4900 |
. 2
⊢ ∪ 𝐶 =
∪ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} |
| 3 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ 𝑢) |
| 4 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥}) |
| 5 | 3, 4 | eleqtrd 2837 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ {𝑥}) |
| 6 | 5 | exlimiv 1930 |
. . . . . . 7
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) → 𝑦 ∈ {𝑥}) |
| 7 | | eqid 2736 |
. . . . . . . 8
⊢ {𝑥} = {𝑥} |
| 8 | | vsnex 5409 |
. . . . . . . . 9
⊢ {𝑥} ∈ V |
| 9 | | eleq2 2824 |
. . . . . . . . . 10
⊢ (𝑢 = {𝑥} → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ {𝑥})) |
| 10 | | eqeq1 2740 |
. . . . . . . . . 10
⊢ (𝑢 = {𝑥} → (𝑢 = {𝑥} ↔ {𝑥} = {𝑥})) |
| 11 | 9, 10 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑢 = {𝑥} → ((𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ (𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥}))) |
| 12 | 8, 11 | spcev 3590 |
. . . . . . . 8
⊢ ((𝑦 ∈ {𝑥} ∧ {𝑥} = {𝑥}) → ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
| 13 | 7, 12 | mpan2 691 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥} → ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
| 14 | 6, 13 | impbii 209 |
. . . . . 6
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ 𝑦 ∈ {𝑥}) |
| 15 | | velsn 4622 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) |
| 16 | | equcom 2018 |
. . . . . 6
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
| 17 | 14, 15, 16 | 3bitri 297 |
. . . . 5
⊢
(∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ 𝑥 = 𝑦) |
| 18 | 17 | rexbii 3084 |
. . . 4
⊢
(∃𝑥 ∈
𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑥 ∈ 𝑋 𝑥 = 𝑦) |
| 19 | | r19.42v 3177 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ (𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) |
| 20 | 19 | exbii 1848 |
. . . . 5
⊢
(∃𝑢∃𝑥 ∈ 𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) |
| 21 | | rexcom4 3273 |
. . . . 5
⊢
(∃𝑥 ∈
𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥}) ↔ ∃𝑢∃𝑥 ∈ 𝑋 (𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
| 22 | | eluniab 4902 |
. . . . 5
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ ∃𝑢(𝑦 ∈ 𝑢 ∧ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥})) |
| 23 | 20, 21, 22 | 3bitr4ri 304 |
. . . 4
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ ∃𝑥 ∈ 𝑋 ∃𝑢(𝑦 ∈ 𝑢 ∧ 𝑢 = {𝑥})) |
| 24 | | risset 3221 |
. . . 4
⊢ (𝑦 ∈ 𝑋 ↔ ∃𝑥 ∈ 𝑋 𝑥 = 𝑦) |
| 25 | 18, 23, 24 | 3bitr4i 303 |
. . 3
⊢ (𝑦 ∈ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} ↔ 𝑦 ∈ 𝑋) |
| 26 | 25 | eqriv 2733 |
. 2
⊢ ∪ {𝑢
∣ ∃𝑥 ∈
𝑋 𝑢 = {𝑥}} = 𝑋 |
| 27 | 2, 26 | eqtr2i 2760 |
1
⊢ 𝑋 = ∪
𝐶 |