MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metrest Structured version   Visualization version   GIF version

Theorem metrest 23117
Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
Hypotheses
Ref Expression
metrest.1 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
metrest.3 𝐽 = (MetOpen‘𝐶)
metrest.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metrest ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)

Proof of Theorem metrest
Dummy variables 𝑢 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4193 . . . . . . . . . 10 (𝑢𝑌) ⊆ 𝑢
2 metrest.3 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘𝐶)
32elmopn2 23038 . . . . . . . . . . . 12 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝐽 ↔ (𝑢𝑋 ∧ ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)))
43simplbda 502 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
54adantlr 713 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
6 ssralv 4021 . . . . . . . . . 10 ((𝑢𝑌) ⊆ 𝑢 → (∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢))
71, 5, 6mpsyl 68 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
8 ssrin 4198 . . . . . . . . . . 11 ((𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
98reximi 3243 . . . . . . . . . 10 (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
109ralimi 3160 . . . . . . . . 9 (∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
117, 10syl 17 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
12 inss2 4194 . . . . . . . 8 (𝑢𝑌) ⊆ 𝑌
1311, 12jctil 522 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
14 sseq1 3980 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (𝑥𝑌 ↔ (𝑢𝑌) ⊆ 𝑌))
15 sseq2 3981 . . . . . . . . . 10 (𝑥 = (𝑢𝑌) → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1615rexbidv 3297 . . . . . . . . 9 (𝑥 = (𝑢𝑌) → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1716raleqbi1dv 3403 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1814, 17anbi12d 632 . . . . . . 7 (𝑥 = (𝑢𝑌) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) ↔ ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))))
1913, 18syl5ibrcom 249 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
2019rexlimdva 3284 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
212mopntop 23033 . . . . . . . . 9 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2221ad2antrr 724 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝐽 ∈ Top)
23 ssel2 3950 . . . . . . . . . . . . . 14 ((𝑥𝑌𝑦𝑥) → 𝑦𝑌)
24 ssel2 3950 . . . . . . . . . . . . . . . 16 ((𝑌𝑋𝑦𝑌) → 𝑦𝑋)
25 rpxr 12385 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
262blopn 23093 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑦(ball‘𝐶)𝑟) ∈ 𝐽)
27 eleq1a 2908 . . . . . . . . . . . . . . . . . . . 20 ((𝑦(ball‘𝐶)𝑟) ∈ 𝐽 → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
2826, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
29283expa 1114 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3025, 29sylan2 594 . . . . . . . . . . . . . . . . 17 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3130rexlimdva 3284 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3224, 31sylan2 594 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3332anassrs 470 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3423, 33sylan2 594 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3534anassrs 470 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3635rexlimdva 3284 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3736adantrd 494 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3837adantrr 715 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3938abssdv 4033 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽)
40 uniopn 21488 . . . . . . . 8 ((𝐽 ∈ Top ∧ {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
4122, 39, 40syl2anc 586 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
42 oveq1 7149 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (𝑦(ball‘𝐶)𝑟) = (𝑢(ball‘𝐶)𝑟))
4342ineq1d 4176 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) = ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌))
4443sseq1d 3986 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4544rexbidv 3297 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4645rspccv 3612 . . . . . . . . . . . . . 14 (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4746ad2antll 727 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
48 ssel 3949 . . . . . . . . . . . . . . 15 (𝑥𝑌 → (𝑢𝑥𝑢𝑌))
49 ssel 3949 . . . . . . . . . . . . . . . 16 (𝑌𝑋 → (𝑢𝑌𝑢𝑋))
50 blcntr 23006 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))
5150a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
5251ancld 553 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
53523expa 1114 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5453reximdva 3274 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5554ex 415 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝑋 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5649, 55sylan9r 511 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑢𝑌 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5748, 56sylan9r 511 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5857adantrr 715 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5947, 58mpdd 43 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6042eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ↔ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
6144, 60anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6261rexbidv 3297 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6362rspcev 3615 . . . . . . . . . . . . 13 ((𝑢𝑥 ∧ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
6463ex 415 . . . . . . . . . . . 12 (𝑢𝑥 → (∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
6559, 64sylcom 30 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
66 simprl 769 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥𝑌)
6766sseld 3954 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢𝑌))
6865, 67jcad 515 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
69 elin 4157 . . . . . . . . . . . . . . 15 (𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ↔ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌))
70 ssel2 3950 . . . . . . . . . . . . . . 15 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) → 𝑢𝑥)
7169, 70sylan2br 596 . . . . . . . . . . . . . 14 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌)) → 𝑢𝑥)
7271expr 459 . . . . . . . . . . . . 13 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7372rexlimivw 3282 . . . . . . . . . . . 12 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7473rexlimivw 3282 . . . . . . . . . . 11 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7574imp 409 . . . . . . . . . 10 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) → 𝑢𝑥)
7668, 75impbid1 227 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
77 elin 4157 . . . . . . . . . 10 (𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌) ↔ (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌))
78 eluniab 4839 . . . . . . . . . . . 12 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)))
79 ancom 463 . . . . . . . . . . . . . 14 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧))
80 anass 471 . . . . . . . . . . . . . 14 (((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
81 r19.41v 3347 . . . . . . . . . . . . . . . 16 (∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8281rexbii 3247 . . . . . . . . . . . . . . 15 (∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
83 r19.41v 3347 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8482, 83bitr2i 278 . . . . . . . . . . . . . 14 ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8579, 80, 843bitri 299 . . . . . . . . . . . . 13 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8685exbii 1848 . . . . . . . . . . . 12 (∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
87 ovex 7175 . . . . . . . . . . . . . . . . 17 (𝑦(ball‘𝐶)𝑟) ∈ V
88 ineq1 4169 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑧𝑌) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
8988sseq1d 3986 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → ((𝑧𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
90 eleq2 2901 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑢𝑧𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9189, 90anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (((𝑧𝑌) ⊆ 𝑥𝑢𝑧) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
9287, 91ceqsexv 3533 . . . . . . . . . . . . . . . 16 (∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9392rexbii 3247 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
94 rexcom4 3249 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9593, 94bitr3i 279 . . . . . . . . . . . . . 14 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9695rexbii 3247 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
97 rexcom4 3249 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9896, 97bitr2i 278 . . . . . . . . . . . 12 (∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9978, 86, 983bitri 299 . . . . . . . . . . 11 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
10099anbi1i 625 . . . . . . . . . 10 ((𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌))
10177, 100bitr2i 278 . . . . . . . . 9 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) ↔ 𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
10276, 101syl6bb 289 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)))
103102eqrdv 2819 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
104 ineq1 4169 . . . . . . . 8 (𝑢 = {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} → (𝑢𝑌) = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
105104rspceeqv 3630 . . . . . . 7 (( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
10641, 103, 105syl2anc 586 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
107106ex 415 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) → ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
10820, 107impbid 214 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
109 simpr 487 . . . . . . . . . . 11 ((𝑌𝑋𝑦𝑌) → 𝑦𝑌)
11024, 109elind 4159 . . . . . . . . . 10 ((𝑌𝑋𝑦𝑌) → 𝑦 ∈ (𝑋𝑌))
111 metrest.1 . . . . . . . . . . . . . . 15 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
112111blres 23024 . . . . . . . . . . . . . 14 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
113112sseq1d 3986 . . . . . . . . . . . . 13 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
1141133expa 1114 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
11525, 114sylan2 594 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
116115rexbidva 3296 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
117110, 116sylan2 594 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
118117anassrs 470 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
11923, 118sylan2 594 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
120119anassrs 470 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
121120ralbidva 3196 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
122121pm5.32da 581 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
123108, 122bitr4d 284 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
124 id 22 . . . . 5 (𝑌𝑋𝑌𝑋)
1252mopnm 23037 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝑋𝐽)
126 ssexg 5213 . . . . 5 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
127124, 125, 126syl2anr 598 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝑌 ∈ V)
128 elrest 16684 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
12921, 127, 128syl2an2r 683 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
130 xmetres2 22954 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐶 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
131111, 130eqeltrid 2917 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑌))
132 metrest.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
133132elmopn2 23038 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
134131, 133syl 17 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
135123, 129, 1343bitr4d 313 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ 𝑥𝐾))
136135eqrdv 2819 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3486  cin 3923  wss 3924   cuni 4824   × cxp 5539  cres 5543  cfv 6341  (class class class)co 7142  *cxr 10660  +crp 12376  t crest 16677  ∞Metcxmet 20513  ballcbl 20515  MetOpencmopn 20518  Topctop 21484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8892  df-inf 8893  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-n0 11885  df-z 11969  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-rest 16679  df-topgen 16700  df-psmet 20520  df-xmet 20521  df-bl 20523  df-mopn 20524  df-top 21485  df-topon 21502  df-bases 21537
This theorem is referenced by:  ressxms  23118  nrginvrcn  23284  resubmet  23393  tgioo2  23394  metdscn2  23448  divcn  23459  dfii3  23474  cncfcn  23500  metsscmetcld  23901  cmetss  23902  minveclem4a  24016  ftc1lem6  24623  ulmdvlem3  24976  abelth  25015  cxpcn3  25315  rlimcnp  25529  minvecolem4b  28639  minvecolem4  28641  hhsscms  29039  ftc1cnnc  34998
  Copyright terms: Public domain W3C validator