MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metrest Structured version   Visualization version   GIF version

Theorem metrest 23880
Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
Hypotheses
Ref Expression
metrest.1 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
metrest.3 𝐽 = (MetOpen‘𝐶)
metrest.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metrest ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)

Proof of Theorem metrest
Dummy variables 𝑢 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4188 . . . . . . . . . 10 (𝑢𝑌) ⊆ 𝑢
2 metrest.3 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘𝐶)
32elmopn2 23798 . . . . . . . . . . . 12 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝐽 ↔ (𝑢𝑋 ∧ ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)))
43simplbda 500 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
54adantlr 713 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
6 ssralv 4010 . . . . . . . . . 10 ((𝑢𝑌) ⊆ 𝑢 → (∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢))
71, 5, 6mpsyl 68 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
8 ssrin 4193 . . . . . . . . . . 11 ((𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
98reximi 3087 . . . . . . . . . 10 (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
109ralimi 3086 . . . . . . . . 9 (∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
117, 10syl 17 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
12 inss2 4189 . . . . . . . 8 (𝑢𝑌) ⊆ 𝑌
1311, 12jctil 520 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
14 sseq1 3969 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (𝑥𝑌 ↔ (𝑢𝑌) ⊆ 𝑌))
15 sseq2 3970 . . . . . . . . . 10 (𝑥 = (𝑢𝑌) → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1615rexbidv 3175 . . . . . . . . 9 (𝑥 = (𝑢𝑌) → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1716raleqbi1dv 3307 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1814, 17anbi12d 631 . . . . . . 7 (𝑥 = (𝑢𝑌) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) ↔ ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))))
1913, 18syl5ibrcom 246 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
2019rexlimdva 3152 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
212mopntop 23793 . . . . . . . . 9 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2221ad2antrr 724 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝐽 ∈ Top)
23 ssel2 3939 . . . . . . . . . . . . . 14 ((𝑥𝑌𝑦𝑥) → 𝑦𝑌)
24 ssel2 3939 . . . . . . . . . . . . . . . 16 ((𝑌𝑋𝑦𝑌) → 𝑦𝑋)
25 rpxr 12924 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
262blopn 23856 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑦(ball‘𝐶)𝑟) ∈ 𝐽)
27 eleq1a 2833 . . . . . . . . . . . . . . . . . . . 20 ((𝑦(ball‘𝐶)𝑟) ∈ 𝐽 → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
2826, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
29283expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3025, 29sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3130rexlimdva 3152 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3224, 31sylan2 593 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3332anassrs 468 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3423, 33sylan2 593 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3534anassrs 468 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3635rexlimdva 3152 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3736adantrd 492 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3837adantrr 715 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3938abssdv 4025 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽)
40 uniopn 22246 . . . . . . . 8 ((𝐽 ∈ Top ∧ {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
4122, 39, 40syl2anc 584 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
42 oveq1 7364 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (𝑦(ball‘𝐶)𝑟) = (𝑢(ball‘𝐶)𝑟))
4342ineq1d 4171 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) = ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌))
4443sseq1d 3975 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4544rexbidv 3175 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4645rspccv 3578 . . . . . . . . . . . . . 14 (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4746ad2antll 727 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
48 ssel 3937 . . . . . . . . . . . . . . 15 (𝑥𝑌 → (𝑢𝑥𝑢𝑌))
49 ssel 3937 . . . . . . . . . . . . . . . 16 (𝑌𝑋 → (𝑢𝑌𝑢𝑋))
50 blcntr 23766 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))
5150a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
5251ancld 551 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
53523expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5453reximdva 3165 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5554ex 413 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝑋 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5649, 55sylan9r 509 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑢𝑌 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5748, 56sylan9r 509 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5857adantrr 715 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5947, 58mpdd 43 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6042eleq2d 2823 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ↔ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
6144, 60anbi12d 631 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6261rexbidv 3175 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6362rspcev 3581 . . . . . . . . . . . . 13 ((𝑢𝑥 ∧ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
6463ex 413 . . . . . . . . . . . 12 (𝑢𝑥 → (∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
6559, 64sylcom 30 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
66 simprl 769 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥𝑌)
6766sseld 3943 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢𝑌))
6865, 67jcad 513 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
69 elin 3926 . . . . . . . . . . . . . . 15 (𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ↔ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌))
70 ssel2 3939 . . . . . . . . . . . . . . 15 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) → 𝑢𝑥)
7169, 70sylan2br 595 . . . . . . . . . . . . . 14 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌)) → 𝑢𝑥)
7271expr 457 . . . . . . . . . . . . 13 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7372rexlimivw 3148 . . . . . . . . . . . 12 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7473rexlimivw 3148 . . . . . . . . . . 11 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7574imp 407 . . . . . . . . . 10 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) → 𝑢𝑥)
7668, 75impbid1 224 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
77 elin 3926 . . . . . . . . . 10 (𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌) ↔ (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌))
78 eluniab 4880 . . . . . . . . . . . 12 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)))
79 ancom 461 . . . . . . . . . . . . . 14 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧))
80 anass 469 . . . . . . . . . . . . . 14 (((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
81 r19.41v 3185 . . . . . . . . . . . . . . . 16 (∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8281rexbii 3097 . . . . . . . . . . . . . . 15 (∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
83 r19.41v 3185 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8482, 83bitr2i 275 . . . . . . . . . . . . . 14 ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8579, 80, 843bitri 296 . . . . . . . . . . . . 13 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8685exbii 1850 . . . . . . . . . . . 12 (∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
87 ovex 7390 . . . . . . . . . . . . . . . . 17 (𝑦(ball‘𝐶)𝑟) ∈ V
88 ineq1 4165 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑧𝑌) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
8988sseq1d 3975 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → ((𝑧𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
90 eleq2 2826 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑢𝑧𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9189, 90anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (((𝑧𝑌) ⊆ 𝑥𝑢𝑧) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
9287, 91ceqsexv 3494 . . . . . . . . . . . . . . . 16 (∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9392rexbii 3097 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
94 rexcom4 3271 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9593, 94bitr3i 276 . . . . . . . . . . . . . 14 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9695rexbii 3097 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
97 rexcom4 3271 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9896, 97bitr2i 275 . . . . . . . . . . . 12 (∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9978, 86, 983bitri 296 . . . . . . . . . . 11 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
10099anbi1i 624 . . . . . . . . . 10 ((𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌))
10177, 100bitr2i 275 . . . . . . . . 9 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) ↔ 𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
10276, 101bitrdi 286 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)))
103102eqrdv 2734 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
104 ineq1 4165 . . . . . . . 8 (𝑢 = {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} → (𝑢𝑌) = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
105104rspceeqv 3595 . . . . . . 7 (( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
10641, 103, 105syl2anc 584 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
107106ex 413 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) → ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
10820, 107impbid 211 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
109 simpr 485 . . . . . . . . . . 11 ((𝑌𝑋𝑦𝑌) → 𝑦𝑌)
11024, 109elind 4154 . . . . . . . . . 10 ((𝑌𝑋𝑦𝑌) → 𝑦 ∈ (𝑋𝑌))
111 metrest.1 . . . . . . . . . . . . . . 15 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
112111blres 23784 . . . . . . . . . . . . . 14 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
113112sseq1d 3975 . . . . . . . . . . . . 13 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
1141133expa 1118 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
11525, 114sylan2 593 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
116115rexbidva 3173 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
117110, 116sylan2 593 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
118117anassrs 468 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
11923, 118sylan2 593 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
120119anassrs 468 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
121120ralbidva 3172 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
122121pm5.32da 579 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
123108, 122bitr4d 281 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
124 id 22 . . . . 5 (𝑌𝑋𝑌𝑋)
1252mopnm 23797 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝑋𝐽)
126 ssexg 5280 . . . . 5 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
127124, 125, 126syl2anr 597 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝑌 ∈ V)
128 elrest 17309 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
12921, 127, 128syl2an2r 683 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
130 xmetres2 23714 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐶 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
131111, 130eqeltrid 2842 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑌))
132 metrest.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
133132elmopn2 23798 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
134131, 133syl 17 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
135123, 129, 1343bitr4d 310 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ 𝑥𝐾))
136135eqrdv 2734 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910   cuni 4865   × cxp 5631  cres 5635  cfv 6496  (class class class)co 7357  *cxr 11188  +crp 12915  t crest 17302  ∞Metcxmet 20781  ballcbl 20783  MetOpencmopn 20786  Topctop 22242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296
This theorem is referenced by:  ressxms  23881  nrginvrcn  24056  resubmet  24165  tgioo2  24166  metdscn2  24220  divcn  24231  dfii3  24246  cncfcn  24273  metsscmetcld  24679  cmetss  24680  minveclem4a  24794  ftc1lem6  25405  ulmdvlem3  25761  abelth  25800  cxpcn3  26101  rlimcnp  26315  minvecolem4b  29820  minvecolem4  29822  hhsscms  30220  ftc1cnnc  36150
  Copyright terms: Public domain W3C validator