Step | Hyp | Ref
| Expression |
1 | | inss1 4163 |
. . . . . . . . . 10
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑢 |
2 | | metrest.3 |
. . . . . . . . . . . . 13
⊢ 𝐽 = (MetOpen‘𝐶) |
3 | 2 | elmopn2 23607 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑢 ∈ 𝐽 ↔ (𝑢 ⊆ 𝑋 ∧ ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢))) |
4 | 3 | simplbda 500 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
5 | 4 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
6 | | ssralv 3988 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ 𝑌) ⊆ 𝑢 → (∀𝑦 ∈ 𝑢 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)) |
7 | 1, 5, 6 | mpsyl 68 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢) |
8 | | ssrin 4168 |
. . . . . . . . . . 11
⊢ ((𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
9 | 8 | reximi 3179 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
10 | 9 | ralimi 3088 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
11 | 7, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)) |
12 | | inss2 4164 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝑌) ⊆ 𝑌 |
13 | 11, 12 | jctil 520 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → ((𝑢 ∩ 𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
14 | | sseq1 3947 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ↔ (𝑢 ∩ 𝑌) ⊆ 𝑌)) |
15 | | sseq2 3948 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
16 | 15 | rexbidv 3227 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
17 | 16 | raleqbi1dv 3341 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 ∩ 𝑌) → (∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌))) |
18 | 14, 17 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = (𝑢 ∩ 𝑌) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) ↔ ((𝑢 ∩ 𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢 ∩ 𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢 ∩ 𝑌)))) |
19 | 13, 18 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑢 ∈ 𝐽) → (𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
20 | 19 | rexlimdva 3214 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) → (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
21 | 2 | mopntop 23602 |
. . . . . . . . 9
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
22 | 21 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝐽 ∈ Top) |
23 | | ssel2 3917 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑌) |
24 | | ssel2 3917 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
25 | | rpxr 12748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
26 | 2 | blopn 23665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐶)𝑟) ∈ 𝐽) |
27 | | eleq1a 2835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦(ball‘𝐶)𝑟) ∈ 𝐽 → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
29 | 28 | 3expa 1117 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
30 | 25, 29 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
31 | 30 | rexlimdva 3214 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
32 | 24, 31 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
33 | 32 | anassrs 468 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
34 | 23, 33 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
35 | 34 | anassrs 468 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) ∧ 𝑦 ∈ 𝑥) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
36 | 35 | rexlimdva 3214 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧 ∈ 𝐽)) |
37 | 36 | adantrd 492 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) → 𝑧 ∈ 𝐽)) |
38 | 37 | adantrr 714 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) → 𝑧 ∈ 𝐽)) |
39 | 38 | abssdv 4003 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ⊆ 𝐽) |
40 | | uniopn 22055 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ⊆ 𝐽) → ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽) |
41 | 22, 39, 40 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽) |
42 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (𝑦(ball‘𝐶)𝑟) = (𝑢(ball‘𝐶)𝑟)) |
43 | 42 | ineq1d 4146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) = ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌)) |
44 | 43 | sseq1d 3953 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
45 | 44 | rexbidv 3227 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
46 | 45 | rspccv 3559 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
47 | 46 | ad2antll 726 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
48 | | ssel 3915 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ 𝑌 → (𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌)) |
49 | | ssel 3915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ⊆ 𝑋 → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑋)) |
50 | | blcntr 23575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) |
51 | 50 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) |
52 | 51 | ancld 551 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
53 | 52 | 3expa 1117 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
54 | 53 | reximdva 3204 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
55 | 54 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑢 ∈ 𝑋 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
56 | 49, 55 | sylan9r 509 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑢 ∈ 𝑌 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
57 | 48, 56 | sylan9r 509 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
58 | 57 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))) |
59 | 47, 58 | mpdd 43 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
60 | 42 | eleq2d 2825 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ↔ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) |
61 | 44, 60 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
62 | 61 | rexbidv 3227 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))) |
63 | 62 | rspcev 3562 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑥 ∧ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
64 | 63 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑥 → (∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
65 | 59, 64 | sylcom 30 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
66 | | simprl 768 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 ⊆ 𝑌) |
67 | 66 | sseld 3921 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌)) |
68 | 65, 67 | jcad 513 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 → (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌))) |
69 | | elin 3904 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ↔ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢 ∈ 𝑌)) |
70 | | ssel2 3917 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) → 𝑢 ∈ 𝑥) |
71 | 69, 70 | sylan2br 595 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢 ∈ 𝑌)) → 𝑢 ∈ 𝑥) |
72 | 71 | expr 457 |
. . . . . . . . . . . . 13
⊢ ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
73 | 72 | rexlimivw 3212 |
. . . . . . . . . . . 12
⊢
(∃𝑟 ∈
ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
74 | 73 | rexlimivw 3212 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥)) |
75 | 74 | imp 407 |
. . . . . . . . . 10
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌) → 𝑢 ∈ 𝑥) |
76 | 68, 75 | impbid1 224 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌))) |
77 | | elin 3904 |
. . . . . . . . . 10
⊢ (𝑢 ∈ (∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌) ↔ (𝑢 ∈ ∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∧ 𝑢 ∈ 𝑌)) |
78 | | eluniab 4855 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ↔ ∃𝑧(𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥))) |
79 | | ancom 461 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ((∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) ∧ 𝑢 ∈ 𝑧)) |
80 | | anass 469 |
. . . . . . . . . . . . . 14
⊢
(((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥) ∧ 𝑢 ∈ 𝑧) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
81 | | r19.41v 3277 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑟 ∈
ℝ+ (𝑧 =
(𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
82 | 81 | rexbii 3182 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
83 | | r19.41v 3277 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑦 ∈
𝑥 (∃𝑟 ∈ ℝ+
𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
84 | 82, 83 | bitr2i 275 |
. . . . . . . . . . . . . 14
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
85 | 79, 80, 84 | 3bitri 297 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
86 | 85 | exbii 1851 |
. . . . . . . . . . . 12
⊢
(∃𝑧(𝑢 ∈ 𝑧 ∧ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)) ↔ ∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
87 | | ovex 7317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦(ball‘𝐶)𝑟) ∈ V |
88 | | ineq1 4140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑧 ∩ 𝑌) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) |
89 | 88 | sseq1d 3953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → ((𝑧 ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
90 | | eleq2 2828 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑢 ∈ 𝑧 ↔ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
91 | 89, 90 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦(ball‘𝐶)𝑟) → (((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))) |
92 | 87, 91 | ceqsexv 3480 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
93 | 92 | rexbii 3182 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑟 ∈
ℝ+ ∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
94 | | rexcom4 3234 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑟 ∈
ℝ+ ∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
95 | 93, 94 | bitr3i 276 |
. . . . . . . . . . . . . 14
⊢
(∃𝑟 ∈
ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
96 | 95 | rexbii 3182 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
97 | | rexcom4 3234 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝑥 ∃𝑧∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧))) |
98 | 96, 97 | bitr2i 275 |
. . . . . . . . . . . 12
⊢
(∃𝑧∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧 ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧)) ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
99 | 78, 86, 98 | 3bitri 297 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ↔ ∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟))) |
100 | 99 | anbi1i 624 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∧ 𝑢 ∈ 𝑌) ↔ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌)) |
101 | 77, 100 | bitr2i 275 |
. . . . . . . . 9
⊢
((∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ 𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢 ∈ 𝑌) ↔ 𝑢 ∈ (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
102 | 76, 101 | bitrdi 287 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢 ∈ 𝑥 ↔ 𝑢 ∈ (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌))) |
103 | 102 | eqrdv 2737 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
104 | | ineq1 4140 |
. . . . . . . 8
⊢ (𝑢 = ∪
{𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} → (𝑢 ∩ 𝑌) = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) |
105 | 104 | rspceeqv 3576 |
. . . . . . 7
⊢ ((∪ {𝑧
∣ (∃𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∈ 𝐽 ∧ 𝑥 = (∪ {𝑧 ∣ (∃𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧 ∩ 𝑌) ⊆ 𝑥)} ∩ 𝑌)) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌)) |
106 | 41, 103, 105 | syl2anc 584 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌)) |
107 | 106 | ex 413 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) → ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
108 | 20, 107 | impbid 211 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
109 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
110 | 24, 109 | elind 4129 |
. . . . . . . . . 10
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ (𝑋 ∩ 𝑌)) |
111 | | metrest.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) |
112 | 111 | blres 23593 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) |
113 | 112 | sseq1d 3953 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
114 | 113 | 3expa 1117 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
115 | 25, 114 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
116 | 115 | rexbidva 3226 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋 ∩ 𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
117 | 110, 116 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
118 | 117 | anassrs 468 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑦 ∈ 𝑌) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
119 | 23, 118 | sylan2 593 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ (𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
120 | 119 | anassrs 468 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) ∧ 𝑦 ∈ 𝑥) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
121 | 120 | ralbidva 3112 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑥 ⊆ 𝑌) → (∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) |
122 | 121 | pm5.32da 579 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))) |
123 | 108, 122 | bitr4d 281 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌) ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
124 | | id 22 |
. . . . 5
⊢ (𝑌 ⊆ 𝑋 → 𝑌 ⊆ 𝑋) |
125 | 2 | mopnm 23606 |
. . . . 5
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
126 | | ssexg 5248 |
. . . . 5
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝑌 ∈ V) |
127 | 124, 125,
126 | syl2anr 597 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
128 | | elrest 17147 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
129 | 21, 127, 128 | syl2an2r 682 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑥 = (𝑢 ∩ 𝑌))) |
130 | | xmetres2 23523 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐶 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
131 | 111, 130 | eqeltrid 2844 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝐷 ∈ (∞Met‘𝑌)) |
132 | | metrest.4 |
. . . . 5
⊢ 𝐾 = (MetOpen‘𝐷) |
133 | 132 | elmopn2 23607 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑌) → (𝑥 ∈ 𝐾 ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
134 | 131, 133 | syl 17 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ 𝐾 ↔ (𝑥 ⊆ 𝑌 ∧ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
135 | 123, 129,
134 | 3bitr4d 311 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ (𝐽 ↾t 𝑌) ↔ 𝑥 ∈ 𝐾)) |
136 | 135 | eqrdv 2737 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) |