MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metrest Structured version   Visualization version   GIF version

Theorem metrest 24449
Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
Hypotheses
Ref Expression
metrest.1 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
metrest.3 𝐽 = (MetOpen‘𝐶)
metrest.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metrest ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)

Proof of Theorem metrest
Dummy variables 𝑢 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4188 . . . . . . . . . 10 (𝑢𝑌) ⊆ 𝑢
2 metrest.3 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘𝐶)
32elmopn2 24370 . . . . . . . . . . . 12 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝐽 ↔ (𝑢𝑋 ∧ ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)))
43simplbda 499 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
54adantlr 715 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
6 ssralv 4000 . . . . . . . . . 10 ((𝑢𝑌) ⊆ 𝑢 → (∀𝑦𝑢𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢))
71, 5, 6mpsyl 68 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢)
8 ssrin 4193 . . . . . . . . . . 11 ((𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
98reximi 3072 . . . . . . . . . 10 (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
109ralimi 3071 . . . . . . . . 9 (∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐶)𝑟) ⊆ 𝑢 → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
117, 10syl 17 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))
12 inss2 4189 . . . . . . . 8 (𝑢𝑌) ⊆ 𝑌
1311, 12jctil 519 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
14 sseq1 3957 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (𝑥𝑌 ↔ (𝑢𝑌) ⊆ 𝑌))
15 sseq2 3958 . . . . . . . . . 10 (𝑥 = (𝑢𝑌) → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1615rexbidv 3158 . . . . . . . . 9 (𝑥 = (𝑢𝑌) → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1716raleqbi1dv 3306 . . . . . . . 8 (𝑥 = (𝑢𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌)))
1814, 17anbi12d 632 . . . . . . 7 (𝑥 = (𝑢𝑌) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) ↔ ((𝑢𝑌) ⊆ 𝑌 ∧ ∀𝑦 ∈ (𝑢𝑌)∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ (𝑢𝑌))))
1913, 18syl5ibrcom 247 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
2019rexlimdva 3135 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) → (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
212mopntop 24365 . . . . . . . . 9 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2221ad2antrr 726 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝐽 ∈ Top)
23 ssel2 3926 . . . . . . . . . . . . . 14 ((𝑥𝑌𝑦𝑥) → 𝑦𝑌)
24 ssel2 3926 . . . . . . . . . . . . . . . 16 ((𝑌𝑋𝑦𝑌) → 𝑦𝑋)
25 rpxr 12910 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
262blopn 24425 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑦(ball‘𝐶)𝑟) ∈ 𝐽)
27 eleq1a 2828 . . . . . . . . . . . . . . . . . . . 20 ((𝑦(ball‘𝐶)𝑟) ∈ 𝐽 → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
2826, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
29283expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3025, 29sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3130rexlimdva 3135 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3224, 31sylan2 593 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3332anassrs 467 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3423, 33sylan2 593 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3534anassrs 467 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3635rexlimdva 3135 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) → 𝑧𝐽))
3736adantrd 491 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3837adantrr 717 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) → 𝑧𝐽))
3938abssdv 4017 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽)
40 uniopn 22822 . . . . . . . 8 ((𝐽 ∈ Top ∧ {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ⊆ 𝐽) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
4122, 39, 40syl2anc 584 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽)
42 oveq1 7362 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (𝑦(ball‘𝐶)𝑟) = (𝑢(ball‘𝐶)𝑟))
4342ineq1d 4170 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) = ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌))
4443sseq1d 3963 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4544rexbidv 3158 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4645rspccv 3571 . . . . . . . . . . . . . 14 (∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
4746ad2antll 729 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
48 ssel 3925 . . . . . . . . . . . . . . 15 (𝑥𝑌 → (𝑢𝑥𝑢𝑌))
49 ssel 3925 . . . . . . . . . . . . . . . 16 (𝑌𝑋 → (𝑢𝑌𝑢𝑋))
50 blcntr 24338 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → 𝑢 ∈ (𝑢(ball‘𝐶)𝑟))
5150a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
5251ancld 550 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
53523expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) ∧ 𝑟 ∈ ℝ+) → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5453reximdva 3147 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑢𝑋) → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
5554ex 412 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (∞Met‘𝑋) → (𝑢𝑋 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5649, 55sylan9r 508 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑢𝑌 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5748, 56sylan9r 508 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5857adantrr 717 . . . . . . . . . . . . 13 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑟 ∈ ℝ+ ((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))))
5947, 58mpdd 43 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6042eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ↔ 𝑢 ∈ (𝑢(ball‘𝐶)𝑟)))
6144, 60anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6261rexbidv 3158 . . . . . . . . . . . . . 14 (𝑦 = 𝑢 → (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))))
6362rspcev 3574 . . . . . . . . . . . . 13 ((𝑢𝑥 ∧ ∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟))) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
6463ex 412 . . . . . . . . . . . 12 (𝑢𝑥 → (∃𝑟 ∈ ℝ+ (((𝑢(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑢(ball‘𝐶)𝑟)) → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
6559, 64sylcom 30 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
66 simprl 770 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥𝑌)
6766sseld 3930 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢𝑌))
6865, 67jcad 512 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 → (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
69 elin 3915 . . . . . . . . . . . . . . 15 (𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ↔ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌))
70 ssel2 3926 . . . . . . . . . . . . . . 15 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌)) → 𝑢𝑥)
7169, 70sylan2br 595 . . . . . . . . . . . . . 14 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥 ∧ (𝑢 ∈ (𝑦(ball‘𝐶)𝑟) ∧ 𝑢𝑌)) → 𝑢𝑥)
7271expr 456 . . . . . . . . . . . . 13 ((((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7372rexlimivw 3131 . . . . . . . . . . . 12 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7473rexlimivw 3131 . . . . . . . . . . 11 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) → (𝑢𝑌𝑢𝑥))
7574imp 406 . . . . . . . . . 10 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) → 𝑢𝑥)
7668, 75impbid1 225 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥 ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌)))
77 elin 3915 . . . . . . . . . 10 (𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌) ↔ (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌))
78 eluniab 4874 . . . . . . . . . . . 12 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)))
79 ancom 460 . . . . . . . . . . . . . 14 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧))
80 anass 468 . . . . . . . . . . . . . 14 (((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥) ∧ 𝑢𝑧) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
81 r19.41v 3164 . . . . . . . . . . . . . . . 16 (∃𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8281rexbii 3081 . . . . . . . . . . . . . . 15 (∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
83 r19.41v 3164 . . . . . . . . . . . . . . 15 (∃𝑦𝑥 (∃𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8482, 83bitr2i 276 . . . . . . . . . . . . . 14 ((∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8579, 80, 843bitri 297 . . . . . . . . . . . . 13 ((𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
8685exbii 1849 . . . . . . . . . . . 12 (∃𝑧(𝑢𝑧 ∧ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
87 ovex 7388 . . . . . . . . . . . . . . . . 17 (𝑦(ball‘𝐶)𝑟) ∈ V
88 ineq1 4164 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑧𝑌) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
8988sseq1d 3963 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → ((𝑧𝑌) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
90 eleq2 2822 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (𝑢𝑧𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9189, 90anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦(ball‘𝐶)𝑟) → (((𝑧𝑌) ⊆ 𝑥𝑢𝑧) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟))))
9287, 91ceqsexv 3488 . . . . . . . . . . . . . . . 16 (∃𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9392rexbii 3081 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
94 rexcom4 3261 . . . . . . . . . . . . . . 15 (∃𝑟 ∈ ℝ+𝑧(𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9593, 94bitr3i 277 . . . . . . . . . . . . . 14 (∃𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9695rexbii 3081 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ↔ ∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
97 rexcom4 3261 . . . . . . . . . . . . 13 (∃𝑦𝑥𝑧𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)))
9896, 97bitr2i 276 . . . . . . . . . . . 12 (∃𝑧𝑦𝑥𝑟 ∈ ℝ+ (𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ ((𝑧𝑌) ⊆ 𝑥𝑢𝑧)) ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
9978, 86, 983bitri 297 . . . . . . . . . . 11 (𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ↔ ∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)))
10099anbi1i 624 . . . . . . . . . 10 ((𝑢 {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∧ 𝑢𝑌) ↔ (∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌))
10177, 100bitr2i 276 . . . . . . . . 9 ((∃𝑦𝑥𝑟 ∈ ℝ+ (((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥𝑢 ∈ (𝑦(ball‘𝐶)𝑟)) ∧ 𝑢𝑌) ↔ 𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
10276, 101bitrdi 287 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → (𝑢𝑥𝑢 ∈ ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)))
103102eqrdv 2731 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → 𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
104 ineq1 4164 . . . . . . . 8 (𝑢 = {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} → (𝑢𝑌) = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌))
105104rspceeqv 3597 . . . . . . 7 (( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∈ 𝐽𝑥 = ( {𝑧 ∣ (∃𝑦𝑥𝑟 ∈ ℝ+ 𝑧 = (𝑦(ball‘𝐶)𝑟) ∧ (𝑧𝑌) ⊆ 𝑥)} ∩ 𝑌)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
10641, 103, 105syl2anc 584 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)) → ∃𝑢𝐽 𝑥 = (𝑢𝑌))
107106ex 412 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥) → ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
10820, 107impbid 212 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
109 simpr 484 . . . . . . . . . . 11 ((𝑌𝑋𝑦𝑌) → 𝑦𝑌)
11024, 109elind 4151 . . . . . . . . . 10 ((𝑌𝑋𝑦𝑌) → 𝑦 ∈ (𝑋𝑌))
111 metrest.1 . . . . . . . . . . . . . . 15 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))
112111blres 24356 . . . . . . . . . . . . . 14 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) = ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌))
113112sseq1d 3963 . . . . . . . . . . . . 13 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
1141133expa 1118 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ*) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
11525, 114sylan2 593 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
116115rexbidva 3156 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
117110, 116sylan2 593 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑌𝑋𝑦𝑌)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
118117anassrs 467 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑦𝑌) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
11923, 118sylan2 593 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑥𝑌𝑦𝑥)) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
120119anassrs 467 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) ∧ 𝑦𝑥) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∃𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
121120ralbidva 3155 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑥𝑌) → (∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥))
122121pm5.32da 579 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → ((𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ ((𝑦(ball‘𝐶)𝑟) ∩ 𝑌) ⊆ 𝑥)))
123108, 122bitr4d 282 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑢𝐽 𝑥 = (𝑢𝑌) ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
124 id 22 . . . . 5 (𝑌𝑋𝑌𝑋)
1252mopnm 24369 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝑋𝐽)
126 ssexg 5265 . . . . 5 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
127124, 125, 126syl2anr 597 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝑌 ∈ V)
128 elrest 17341 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
12921, 127, 128syl2an2r 685 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝑌)))
130 xmetres2 24286 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐶 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
131111, 130eqeltrid 2837 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑌))
132 metrest.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
133132elmopn2 24370 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
134131, 133syl 17 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥𝐾 ↔ (𝑥𝑌 ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
135123, 129, 1343bitr4d 311 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ (𝐽t 𝑌) ↔ 𝑥𝐾))
136135eqrdv 2731 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wral 3049  wrex 3058  Vcvv 3438  cin 3898  wss 3899   cuni 4860   × cxp 5619  cres 5623  cfv 6489  (class class class)co 7355  *cxr 11155  +crp 12900  t crest 17334  ∞Metcxmet 21286  ballcbl 21288  MetOpencmopn 21291  Topctop 22818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-rest 17336  df-topgen 17357  df-psmet 21293  df-xmet 21294  df-bl 21296  df-mopn 21297  df-top 22819  df-topon 22836  df-bases 22871
This theorem is referenced by:  ressxms  24450  nrginvrcn  24617  resubmet  24727  tgioo2  24728  metdscn2  24783  divcnOLD  24794  divcn  24796  dfii3  24813  cncfcn  24840  metsscmetcld  25252  cmetss  25253  minveclem4a  25367  ftc1lem6  25985  ulmdvlem3  26348  abelth  26388  cxpcn3  26695  rlimcnp  26912  minvecolem4b  30869  minvecolem4  30871  hhsscms  31269  ftc1cnnc  37742
  Copyright terms: Public domain W3C validator