Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version |
Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
Ref | Expression |
---|---|
pnfex | ⊢ +∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 11011 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | cnex 10952 | . . . 4 ⊢ ℂ ∈ V | |
3 | 2 | uniex 7594 | . . 3 ⊢ ∪ ℂ ∈ V |
4 | 3 | pwex 5303 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ +∞ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 ∪ cuni 4839 ℂcc 10869 +∞cpnf 11006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 df-pnf 11011 |
This theorem is referenced by: pnfxr 11029 mnfxr 11032 elxnn0 12307 elxr 12852 xnegex 12942 xaddval 12957 xmulval 12959 xrinfmss 13044 hashgval 14047 hashinf 14049 hashfxnn0 14051 pcval 16545 pc0 16555 ramcl2 16717 iccpnfhmeo 24108 taylfval 25518 xrlimcnp 26118 xrge0iifcv 31884 xrge0iifiso 31885 xrge0iifhom 31887 sge0f1o 43920 sge0sup 43929 sge0pnfmpt 43983 |
Copyright terms: Public domain | W3C validator |