Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version |
Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
Ref | Expression |
---|---|
pnfex | ⊢ +∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 10942 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | cnex 10883 | . . . 4 ⊢ ℂ ∈ V | |
3 | 2 | uniex 7572 | . . 3 ⊢ ∪ ℂ ∈ V |
4 | 3 | pwex 5298 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ +∞ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 ∪ cuni 4836 ℂcc 10800 +∞cpnf 10937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-pnf 10942 |
This theorem is referenced by: pnfxr 10960 mnfxr 10963 elxnn0 12237 elxr 12781 xnegex 12871 xaddval 12886 xmulval 12888 xrinfmss 12973 hashgval 13975 hashinf 13977 hashfxnn0 13979 pcval 16473 pc0 16483 ramcl2 16645 iccpnfhmeo 24014 taylfval 25423 xrlimcnp 26023 xrge0iifcv 31786 xrge0iifiso 31787 xrge0iifhom 31789 sge0f1o 43810 sge0sup 43819 sge0pnfmpt 43873 |
Copyright terms: Public domain | W3C validator |