![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version |
Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
Ref | Expression |
---|---|
pnfex | ⊢ +∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 11295 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | cnex 11234 | . . . 4 ⊢ ℂ ∈ V | |
3 | 2 | uniex 7760 | . . 3 ⊢ ∪ ℂ ∈ V |
4 | 3 | pwex 5386 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ +∞ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 𝒫 cpw 4605 ∪ cuni 4912 ℂcc 11151 +∞cpnf 11290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pow 5371 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-pw 4607 df-uni 4913 df-pnf 11295 |
This theorem is referenced by: pnfxr 11313 mnfxr 11316 elxnn0 12599 elxr 13156 xnegex 13247 xaddval 13262 xmulval 13264 xrinfmss 13349 hashgval 14369 hashinf 14371 hashfxnn0 14373 pcval 16878 pc0 16888 ramcl2 17050 iccpnfhmeo 24990 taylfval 26415 xrlimcnp 27026 xrge0iifcv 33895 xrge0iifiso 33896 xrge0iifhom 33898 sge0f1o 46338 sge0sup 46347 sge0pnfmpt 46401 |
Copyright terms: Public domain | W3C validator |