| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version | ||
| Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| pnfex | ⊢ +∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11151 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | cnex 11090 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | uniex 7677 | . . 3 ⊢ ∪ ℂ ∈ V |
| 4 | 3 | pwex 5319 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ +∞ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 𝒫 cpw 4551 ∪ cuni 4858 ℂcc 11007 +∞cpnf 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pow 5304 ax-un 7671 ax-cnex 11065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-pw 4553 df-uni 4859 df-pnf 11151 |
| This theorem is referenced by: pnfxr 11169 mnfxr 11172 elxnn0 12459 elxr 13018 xnegex 13110 xaddval 13125 xmulval 13127 xrinfmss 13212 hashgval 14240 hashinf 14242 hashfxnn0 14244 pcval 16756 pc0 16766 ramcl2 16928 iccpnfhmeo 24841 taylfval 26264 xrlimcnp 26876 xrge0iifcv 33901 xrge0iifiso 33902 xrge0iifhom 33904 sge0f1o 46367 sge0sup 46376 sge0pnfmpt 46430 |
| Copyright terms: Public domain | W3C validator |