MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfex Structured version   Visualization version   GIF version

Theorem pnfex 11028
Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.)
Assertion
Ref Expression
pnfex +∞ ∈ V

Proof of Theorem pnfex
StepHypRef Expression
1 df-pnf 11011 . 2 +∞ = 𝒫
2 cnex 10952 . . . 4 ℂ ∈ V
32uniex 7594 . . 3 ℂ ∈ V
43pwex 5303 . 2 𝒫 ℂ ∈ V
51, 4eqeltri 2835 1 +∞ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  𝒫 cpw 4533   cuni 4839  cc 10869  +∞cpnf 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-pow 5288  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840  df-pnf 11011
This theorem is referenced by:  pnfxr  11029  mnfxr  11032  elxnn0  12307  elxr  12852  xnegex  12942  xaddval  12957  xmulval  12959  xrinfmss  13044  hashgval  14047  hashinf  14049  hashfxnn0  14051  pcval  16545  pc0  16555  ramcl2  16717  iccpnfhmeo  24108  taylfval  25518  xrlimcnp  26118  xrge0iifcv  31884  xrge0iifiso  31885  xrge0iifhom  31887  sge0f1o  43920  sge0sup  43929  sge0pnfmpt  43983
  Copyright terms: Public domain W3C validator