| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version | ||
| Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| pnfex | ⊢ +∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11276 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | cnex 11215 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | uniex 7740 | . . 3 ⊢ ∪ ℂ ∈ V |
| 4 | 3 | pwex 5355 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
| 5 | 1, 4 | eqeltri 2831 | 1 ⊢ +∞ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 𝒫 cpw 4580 ∪ cuni 4888 ℂcc 11132 +∞cpnf 11271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pow 5340 ax-un 7734 ax-cnex 11190 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-pw 4582 df-uni 4889 df-pnf 11276 |
| This theorem is referenced by: pnfxr 11294 mnfxr 11297 elxnn0 12581 elxr 13137 xnegex 13229 xaddval 13244 xmulval 13246 xrinfmss 13331 hashgval 14356 hashinf 14358 hashfxnn0 14360 pcval 16869 pc0 16879 ramcl2 17041 iccpnfhmeo 24899 taylfval 26323 xrlimcnp 26935 xrge0iifcv 33970 xrge0iifiso 33971 xrge0iifhom 33973 sge0f1o 46378 sge0sup 46387 sge0pnfmpt 46441 |
| Copyright terms: Public domain | W3C validator |