| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version | ||
| Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| pnfex | ⊢ +∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11217 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | cnex 11156 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | uniex 7720 | . . 3 ⊢ ∪ ℂ ∈ V |
| 4 | 3 | pwex 5338 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ +∞ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 ∪ cuni 4874 ℂcc 11073 +∞cpnf 11212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pow 5323 ax-un 7714 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 df-uni 4875 df-pnf 11217 |
| This theorem is referenced by: pnfxr 11235 mnfxr 11238 elxnn0 12524 elxr 13083 xnegex 13175 xaddval 13190 xmulval 13192 xrinfmss 13277 hashgval 14305 hashinf 14307 hashfxnn0 14309 pcval 16822 pc0 16832 ramcl2 16994 iccpnfhmeo 24850 taylfval 26273 xrlimcnp 26885 xrge0iifcv 33931 xrge0iifiso 33932 xrge0iifhom 33934 sge0f1o 46387 sge0sup 46396 sge0pnfmpt 46450 |
| Copyright terms: Public domain | W3C validator |