| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version | ||
| Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| pnfex | ⊢ +∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11186 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | cnex 11125 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | uniex 7697 | . . 3 ⊢ ∪ ℂ ∈ V |
| 4 | 3 | pwex 5330 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ +∞ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 𝒫 cpw 4559 ∪ cuni 4867 ℂcc 11042 +∞cpnf 11181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pow 5315 ax-un 7691 ax-cnex 11100 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 df-uni 4868 df-pnf 11186 |
| This theorem is referenced by: pnfxr 11204 mnfxr 11207 elxnn0 12493 elxr 13052 xnegex 13144 xaddval 13159 xmulval 13161 xrinfmss 13246 hashgval 14274 hashinf 14276 hashfxnn0 14278 pcval 16791 pc0 16801 ramcl2 16963 iccpnfhmeo 24819 taylfval 26242 xrlimcnp 26854 xrge0iifcv 33897 xrge0iifiso 33898 xrge0iifhom 33900 sge0f1o 46353 sge0sup 46362 sge0pnfmpt 46416 |
| Copyright terms: Public domain | W3C validator |