| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version | ||
| Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| pnfex | ⊢ +∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11210 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | cnex 11149 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | uniex 7717 | . . 3 ⊢ ∪ ℂ ∈ V |
| 4 | 3 | pwex 5335 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ +∞ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 ∪ cuni 4871 ℂcc 11066 +∞cpnf 11205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 ax-un 7711 ax-cnex 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 df-uni 4872 df-pnf 11210 |
| This theorem is referenced by: pnfxr 11228 mnfxr 11231 elxnn0 12517 elxr 13076 xnegex 13168 xaddval 13183 xmulval 13185 xrinfmss 13270 hashgval 14298 hashinf 14300 hashfxnn0 14302 pcval 16815 pc0 16825 ramcl2 16987 iccpnfhmeo 24843 taylfval 26266 xrlimcnp 26878 xrge0iifcv 33924 xrge0iifiso 33925 xrge0iifhom 33927 sge0f1o 46380 sge0sup 46389 sge0pnfmpt 46443 |
| Copyright terms: Public domain | W3C validator |