![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version |
Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
Ref | Expression |
---|---|
pnfex | ⊢ +∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 11326 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | cnex 11265 | . . . 4 ⊢ ℂ ∈ V | |
3 | 2 | uniex 7776 | . . 3 ⊢ ∪ ℂ ∈ V |
4 | 3 | pwex 5398 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ +∞ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 ∪ cuni 4931 ℂcc 11182 +∞cpnf 11321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 df-pnf 11326 |
This theorem is referenced by: pnfxr 11344 mnfxr 11347 elxnn0 12627 elxr 13179 xnegex 13270 xaddval 13285 xmulval 13287 xrinfmss 13372 hashgval 14382 hashinf 14384 hashfxnn0 14386 pcval 16891 pc0 16901 ramcl2 17063 iccpnfhmeo 24995 taylfval 26418 xrlimcnp 27029 xrge0iifcv 33880 xrge0iifiso 33881 xrge0iifhom 33883 sge0f1o 46303 sge0sup 46312 sge0pnfmpt 46366 |
Copyright terms: Public domain | W3C validator |