| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfex | Structured version Visualization version GIF version | ||
| Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| pnfex | ⊢ +∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11148 | . 2 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | cnex 11087 | . . . 4 ⊢ ℂ ∈ V | |
| 3 | 2 | uniex 7674 | . . 3 ⊢ ∪ ℂ ∈ V |
| 4 | 3 | pwex 5316 | . 2 ⊢ 𝒫 ∪ ℂ ∈ V |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ +∞ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 ∪ cuni 4856 ℂcc 11004 +∞cpnf 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 df-uni 4857 df-pnf 11148 |
| This theorem is referenced by: pnfxr 11166 mnfxr 11169 elxnn0 12456 elxr 13015 xnegex 13107 xaddval 13122 xmulval 13124 xrinfmss 13209 hashgval 14240 hashinf 14242 hashfxnn0 14244 pcval 16756 pc0 16766 ramcl2 16928 iccpnfhmeo 24870 taylfval 26293 xrlimcnp 26905 xrge0iifcv 33947 xrge0iifiso 33948 xrge0iifhom 33950 sge0f1o 46490 sge0sup 46499 sge0pnfmpt 46553 |
| Copyright terms: Public domain | W3C validator |