![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnn0n0n1ge2b | Structured version Visualization version GIF version |
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
Ref | Expression |
---|---|
xnn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 12545 | . 2 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
2 | nn0n0n1ge2b 12539 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | |
3 | 0nn0 12486 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
4 | nn0nepnf 12551 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≠ +∞ |
6 | 5 | necomi 2995 | . . . . . 6 ⊢ +∞ ≠ 0 |
7 | neeq1 3003 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0)) | |
8 | 6, 7 | mpbiri 257 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 0) |
9 | 1nn0 12487 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
10 | nn0nepnf 12551 | . . . . . . . 8 ⊢ (1 ∈ ℕ0 → 1 ≠ +∞) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 1 ≠ +∞ |
12 | 11 | necomi 2995 | . . . . . 6 ⊢ +∞ ≠ 1 |
13 | neeq1 3003 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1)) | |
14 | 12, 13 | mpbiri 257 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 1) |
15 | 8, 14 | jca 512 | . . . 4 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) |
16 | 2re 12285 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
17 | 16 | rexri 11271 | . . . . . 6 ⊢ 2 ∈ ℝ* |
18 | pnfge 13109 | . . . . . 6 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 2 ≤ +∞ |
20 | breq2 5152 | . . . . 5 ⊢ (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞)) | |
21 | 19, 20 | mpbiri 257 | . . . 4 ⊢ (𝑁 = +∞ → 2 ≤ 𝑁) |
22 | 15, 21 | 2thd 264 | . . 3 ⊢ (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
23 | 2, 22 | jaoi 855 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
24 | 1, 23 | sylbi 216 | 1 ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5148 0cc0 11109 1c1 11110 +∞cpnf 11244 ℝ*cxr 11246 ≤ cle 11248 2c2 12266 ℕ0cn0 12471 ℕ0*cxnn0 12543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-xnn0 12544 |
This theorem is referenced by: vdgfrgrgt2 29548 xnn01gt 31978 lfuhgr2 34104 |
Copyright terms: Public domain | W3C validator |