| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0n0n1ge2b | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| xnn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 12493 | . 2 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 2 | nn0n0n1ge2b 12487 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | |
| 3 | 0nn0 12433 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 4 | nn0nepnf 12499 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≠ +∞ |
| 6 | 5 | necomi 2979 | . . . . . 6 ⊢ +∞ ≠ 0 |
| 7 | neeq1 2987 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 0) |
| 9 | 1nn0 12434 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 10 | nn0nepnf 12499 | . . . . . . . 8 ⊢ (1 ∈ ℕ0 → 1 ≠ +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 1 ≠ +∞ |
| 12 | 11 | necomi 2979 | . . . . . 6 ⊢ +∞ ≠ 1 |
| 13 | neeq1 2987 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1)) | |
| 14 | 12, 13 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 1) |
| 15 | 8, 14 | jca 511 | . . . 4 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) |
| 16 | 2re 12236 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 17 | 16 | rexri 11208 | . . . . . 6 ⊢ 2 ∈ ℝ* |
| 18 | pnfge 13066 | . . . . . 6 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 2 ≤ +∞ |
| 20 | breq2 5106 | . . . . 5 ⊢ (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞)) | |
| 21 | 19, 20 | mpbiri 258 | . . . 4 ⊢ (𝑁 = +∞ → 2 ≤ 𝑁) |
| 22 | 15, 21 | 2thd 265 | . . 3 ⊢ (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| 23 | 2, 22 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| 24 | 1, 23 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 0cc0 11044 1c1 11045 +∞cpnf 11181 ℝ*cxr 11183 ≤ cle 11185 2c2 12217 ℕ0cn0 12418 ℕ0*cxnn0 12491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 |
| This theorem is referenced by: vdgfrgrgt2 30277 xnn01gt 32743 lfuhgr2 35099 |
| Copyright terms: Public domain | W3C validator |