MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0n0n1ge2b Structured version   Visualization version   GIF version

Theorem xnn0n0n1ge2b 13153
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.)
Assertion
Ref Expression
xnn0n0n1ge2b (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem xnn0n0n1ge2b
StepHypRef Expression
1 elxnn0 12581 . 2 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
2 nn0n0n1ge2b 12575 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
3 0nn0 12521 . . . . . . . 8 0 ∈ ℕ0
4 nn0nepnf 12587 . . . . . . . 8 (0 ∈ ℕ0 → 0 ≠ +∞)
53, 4ax-mp 5 . . . . . . 7 0 ≠ +∞
65necomi 2987 . . . . . 6 +∞ ≠ 0
7 neeq1 2995 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0))
86, 7mpbiri 258 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 0)
9 1nn0 12522 . . . . . . . 8 1 ∈ ℕ0
10 nn0nepnf 12587 . . . . . . . 8 (1 ∈ ℕ0 → 1 ≠ +∞)
119, 10ax-mp 5 . . . . . . 7 1 ≠ +∞
1211necomi 2987 . . . . . 6 +∞ ≠ 1
13 neeq1 2995 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1))
1412, 13mpbiri 258 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 1)
158, 14jca 511 . . . 4 (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
16 2re 12319 . . . . . . 7 2 ∈ ℝ
1716rexri 11298 . . . . . 6 2 ∈ ℝ*
18 pnfge 13151 . . . . . 6 (2 ∈ ℝ* → 2 ≤ +∞)
1917, 18ax-mp 5 . . . . 5 2 ≤ +∞
20 breq2 5128 . . . . 5 (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞))
2119, 20mpbiri 258 . . . 4 (𝑁 = +∞ → 2 ≤ 𝑁)
2215, 212thd 265 . . 3 (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
232, 22jaoi 857 . 2 ((𝑁 ∈ ℕ0𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
241, 23sylbi 217 1 (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  0cc0 11134  1c1 11135  +∞cpnf 11271  *cxr 11273  cle 11275  2c2 12300  0cn0 12506  0*cxnn0 12579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580
This theorem is referenced by:  vdgfrgrgt2  30284  xnn01gt  32752  lfuhgr2  35146
  Copyright terms: Public domain W3C validator