| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0n0n1ge2b | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| xnn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 12517 | . 2 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 2 | nn0n0n1ge2b 12511 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | |
| 3 | 0nn0 12457 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 4 | nn0nepnf 12523 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≠ +∞ |
| 6 | 5 | necomi 2979 | . . . . . 6 ⊢ +∞ ≠ 0 |
| 7 | neeq1 2987 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 0) |
| 9 | 1nn0 12458 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 10 | nn0nepnf 12523 | . . . . . . . 8 ⊢ (1 ∈ ℕ0 → 1 ≠ +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 1 ≠ +∞ |
| 12 | 11 | necomi 2979 | . . . . . 6 ⊢ +∞ ≠ 1 |
| 13 | neeq1 2987 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1)) | |
| 14 | 12, 13 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 1) |
| 15 | 8, 14 | jca 511 | . . . 4 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) |
| 16 | 2re 12260 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 17 | 16 | rexri 11232 | . . . . . 6 ⊢ 2 ∈ ℝ* |
| 18 | pnfge 13090 | . . . . . 6 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 2 ≤ +∞ |
| 20 | breq2 5111 | . . . . 5 ⊢ (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞)) | |
| 21 | 19, 20 | mpbiri 258 | . . . 4 ⊢ (𝑁 = +∞ → 2 ≤ 𝑁) |
| 22 | 15, 21 | 2thd 265 | . . 3 ⊢ (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| 23 | 2, 22 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| 24 | 1, 23 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 0cc0 11068 1c1 11069 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 2c2 12241 ℕ0cn0 12442 ℕ0*cxnn0 12515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 |
| This theorem is referenced by: vdgfrgrgt2 30227 xnn01gt 32693 lfuhgr2 35106 |
| Copyright terms: Public domain | W3C validator |