MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0n0n1ge2b Structured version   Visualization version   GIF version

Theorem xnn0n0n1ge2b 12276
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.)
Assertion
Ref Expression
xnn0n0n1ge2b (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem xnn0n0n1ge2b
StepHypRef Expression
1 elxnn0 11716 . 2 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
2 nn0n0n1ge2b 11710 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
3 0nn0 11659 . . . . . . . 8 0 ∈ ℕ0
4 nn0nepnf 11722 . . . . . . . 8 (0 ∈ ℕ0 → 0 ≠ +∞)
53, 4ax-mp 5 . . . . . . 7 0 ≠ +∞
65necomi 3022 . . . . . 6 +∞ ≠ 0
7 neeq1 3030 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0))
86, 7mpbiri 250 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 0)
9 1nn0 11660 . . . . . . . 8 1 ∈ ℕ0
10 nn0nepnf 11722 . . . . . . . 8 (1 ∈ ℕ0 → 1 ≠ +∞)
119, 10ax-mp 5 . . . . . . 7 1 ≠ +∞
1211necomi 3022 . . . . . 6 +∞ ≠ 1
13 neeq1 3030 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1))
1412, 13mpbiri 250 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 1)
158, 14jca 507 . . . 4 (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
16 2re 11449 . . . . . . 7 2 ∈ ℝ
1716rexri 10435 . . . . . 6 2 ∈ ℝ*
18 pnfge 12275 . . . . . 6 (2 ∈ ℝ* → 2 ≤ +∞)
1917, 18ax-mp 5 . . . . 5 2 ≤ +∞
20 breq2 4890 . . . . 5 (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞))
2119, 20mpbiri 250 . . . 4 (𝑁 = +∞ → 2 ≤ 𝑁)
2215, 212thd 257 . . 3 (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
232, 22jaoi 846 . 2 ((𝑁 ∈ ℕ0𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
241, 23sylbi 209 1 (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2106  wne 2968   class class class wbr 4886  0cc0 10272  1c1 10273  +∞cpnf 10408  *cxr 10410  cle 10412  2c2 11430  0cn0 11642  0*cxnn0 11714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-xnn0 11715
This theorem is referenced by:  vdgfrgrgt2  27720
  Copyright terms: Public domain W3C validator