| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0n0n1ge2b | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| xnn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 12524 | . 2 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 2 | nn0n0n1ge2b 12518 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | |
| 3 | 0nn0 12464 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 4 | nn0nepnf 12530 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≠ +∞ |
| 6 | 5 | necomi 2980 | . . . . . 6 ⊢ +∞ ≠ 0 |
| 7 | neeq1 2988 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 0) |
| 9 | 1nn0 12465 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 10 | nn0nepnf 12530 | . . . . . . . 8 ⊢ (1 ∈ ℕ0 → 1 ≠ +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 1 ≠ +∞ |
| 12 | 11 | necomi 2980 | . . . . . 6 ⊢ +∞ ≠ 1 |
| 13 | neeq1 2988 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1)) | |
| 14 | 12, 13 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 1) |
| 15 | 8, 14 | jca 511 | . . . 4 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) |
| 16 | 2re 12267 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 17 | 16 | rexri 11239 | . . . . . 6 ⊢ 2 ∈ ℝ* |
| 18 | pnfge 13097 | . . . . . 6 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 2 ≤ +∞ |
| 20 | breq2 5114 | . . . . 5 ⊢ (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞)) | |
| 21 | 19, 20 | mpbiri 258 | . . . 4 ⊢ (𝑁 = +∞ → 2 ≤ 𝑁) |
| 22 | 15, 21 | 2thd 265 | . . 3 ⊢ (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| 23 | 2, 22 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| 24 | 1, 23 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 0cc0 11075 1c1 11076 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 2c2 12248 ℕ0cn0 12449 ℕ0*cxnn0 12522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 |
| This theorem is referenced by: vdgfrgrgt2 30234 xnn01gt 32700 lfuhgr2 35113 |
| Copyright terms: Public domain | W3C validator |