|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xnn0n0n1ge2b | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| xnn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxnn0 12601 | . 2 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 2 | nn0n0n1ge2b 12595 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | |
| 3 | 0nn0 12541 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 4 | nn0nepnf 12607 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≠ +∞ | 
| 6 | 5 | necomi 2995 | . . . . . 6 ⊢ +∞ ≠ 0 | 
| 7 | neeq1 3003 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 0) | 
| 9 | 1nn0 12542 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 10 | nn0nepnf 12607 | . . . . . . . 8 ⊢ (1 ∈ ℕ0 → 1 ≠ +∞) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 1 ≠ +∞ | 
| 12 | 11 | necomi 2995 | . . . . . 6 ⊢ +∞ ≠ 1 | 
| 13 | neeq1 3003 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1)) | |
| 14 | 12, 13 | mpbiri 258 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 1) | 
| 15 | 8, 14 | jca 511 | . . . 4 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) | 
| 16 | 2re 12340 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 17 | 16 | rexri 11319 | . . . . . 6 ⊢ 2 ∈ ℝ* | 
| 18 | pnfge 13172 | . . . . . 6 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 2 ≤ +∞ | 
| 20 | breq2 5147 | . . . . 5 ⊢ (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞)) | |
| 21 | 19, 20 | mpbiri 258 | . . . 4 ⊢ (𝑁 = +∞ → 2 ≤ 𝑁) | 
| 22 | 15, 21 | 2thd 265 | . . 3 ⊢ (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | 
| 23 | 2, 22 | jaoi 858 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | 
| 24 | 1, 23 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 0cc0 11155 1c1 11156 +∞cpnf 11292 ℝ*cxr 11294 ≤ cle 11296 2c2 12321 ℕ0cn0 12526 ℕ0*cxnn0 12599 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-xnn0 12600 | 
| This theorem is referenced by: vdgfrgrgt2 30317 xnn01gt 32774 lfuhgr2 35124 | 
| Copyright terms: Public domain | W3C validator |