![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnn0n0n1ge2b | Structured version Visualization version GIF version |
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
Ref | Expression |
---|---|
xnn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 11781 | . 2 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
2 | nn0n0n1ge2b 11775 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | |
3 | 0nn0 11724 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
4 | nn0nepnf 11787 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → 0 ≠ +∞) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 0 ≠ +∞ |
6 | 5 | necomi 3021 | . . . . . 6 ⊢ +∞ ≠ 0 |
7 | neeq1 3029 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0)) | |
8 | 6, 7 | mpbiri 250 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 0) |
9 | 1nn0 11725 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
10 | nn0nepnf 11787 | . . . . . . . 8 ⊢ (1 ∈ ℕ0 → 1 ≠ +∞) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 1 ≠ +∞ |
12 | 11 | necomi 3021 | . . . . . 6 ⊢ +∞ ≠ 1 |
13 | neeq1 3029 | . . . . . 6 ⊢ (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1)) | |
14 | 12, 13 | mpbiri 250 | . . . . 5 ⊢ (𝑁 = +∞ → 𝑁 ≠ 1) |
15 | 8, 14 | jca 504 | . . . 4 ⊢ (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) |
16 | 2re 11514 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
17 | 16 | rexri 10499 | . . . . . 6 ⊢ 2 ∈ ℝ* |
18 | pnfge 12342 | . . . . . 6 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ 2 ≤ +∞ |
20 | breq2 4933 | . . . . 5 ⊢ (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞)) | |
21 | 19, 20 | mpbiri 250 | . . . 4 ⊢ (𝑁 = +∞ → 2 ≤ 𝑁) |
22 | 15, 21 | 2thd 257 | . . 3 ⊢ (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
23 | 2, 22 | jaoi 843 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
24 | 1, 23 | sylbi 209 | 1 ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 class class class wbr 4929 0cc0 10335 1c1 10336 +∞cpnf 10471 ℝ*cxr 10473 ≤ cle 10475 2c2 11495 ℕ0cn0 11707 ℕ0*cxnn0 11779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-n0 11708 df-xnn0 11780 |
This theorem is referenced by: vdgfrgrgt2 27832 |
Copyright terms: Public domain | W3C validator |