MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0nemnf Structured version   Visualization version   GIF version

Theorem xnn0nemnf 12585
Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nemnf (𝐴 ∈ ℕ0*𝐴 ≠ -∞)

Proof of Theorem xnn0nemnf
StepHypRef Expression
1 elxnn0 12576 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 12510 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32renemnfd 11287 . . 3 (𝐴 ∈ ℕ0𝐴 ≠ -∞)
4 pnfnemnf 11290 . . . 4 +∞ ≠ -∞
5 neeq1 2994 . . . 4 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
64, 5mpbiri 258 . . 3 (𝐴 = +∞ → 𝐴 ≠ -∞)
73, 6jaoi 857 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ≠ -∞)
81, 7sylbi 217 1 (𝐴 ∈ ℕ0*𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2108  wne 2932  +∞cpnf 11266  -∞cmnf 11267  0cn0 12501  0*cxnn0 12574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-nn 12241  df-n0 12502  df-xnn0 12575
This theorem is referenced by:  xnn0xrnemnf  12586
  Copyright terms: Public domain W3C validator