MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tayl0 Structured version   Visualization version   GIF version

Theorem tayl0 25530
Description: The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
tayl0 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem tayl0
StepHypRef Expression
1 taylfval.a . . . . 5 (𝜑𝐴𝑆)
2 taylfval.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
3 recnprss 25077 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
42, 3syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
51, 4sstrd 3932 . . . 4 (𝜑𝐴 ⊆ ℂ)
6 fveq2 6783 . . . . . . . 8 (𝑘 = 0 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘0))
76dmeqd 5817 . . . . . . 7 (𝑘 = 0 → dom ((𝑆 D𝑛 𝐹)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘0))
87eleq2d 2825 . . . . . 6 (𝑘 = 0 → (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0)))
9 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
109ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
11 taylfval.n . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
12 elxnn0 12316 . . . . . . . . 9 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
13 0xr 11031 . . . . . . . . . . 11 0 ∈ ℝ*
1413a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ∈ ℝ*)
15 xnn0xr 12319 . . . . . . . . . 10 (𝑁 ∈ ℕ0*𝑁 ∈ ℝ*)
16 xnn0ge0 12878 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ≤ 𝑁)
17 lbicc2 13205 . . . . . . . . . 10 ((0 ∈ ℝ*𝑁 ∈ ℝ* ∧ 0 ≤ 𝑁) → 0 ∈ (0[,]𝑁))
1814, 15, 16, 17syl3anc 1370 . . . . . . . . 9 (𝑁 ∈ ℕ0* → 0 ∈ (0[,]𝑁))
1912, 18sylbir 234 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 = +∞) → 0 ∈ (0[,]𝑁))
2011, 19syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0[,]𝑁))
21 0zd 12340 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
2220, 21elind 4129 . . . . . 6 (𝜑 → 0 ∈ ((0[,]𝑁) ∩ ℤ))
238, 10, 22rspcdva 3563 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0))
24 cnex 10961 . . . . . . . . . 10 ℂ ∈ V
2524a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
26 taylfval.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
27 elpm2r 8642 . . . . . . . . 9 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2825, 2, 26, 1, 27syl22anc 836 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
29 dvn0 25097 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
304, 28, 29syl2anc 584 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
3130dmeqd 5817 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = dom 𝐹)
3226fdmd 6620 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3331, 32eqtrd 2779 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = 𝐴)
3423, 33eleqtrd 2842 . . . 4 (𝜑𝐵𝐴)
355, 34sseldd 3923 . . 3 (𝜑𝐵 ∈ ℂ)
36 cnfldbas 20610 . . . . . . 7 ℂ = (Base‘ℂfld)
37 cnfld0 20631 . . . . . . 7 0 = (0g‘ℂfld)
38 cnring 20629 . . . . . . . 8 fld ∈ Ring
39 ringmnd 19802 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4038, 39mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ Mnd)
41 ovex 7317 . . . . . . . . 9 (0[,]𝑁) ∈ V
4241inex1 5242 . . . . . . . 8 ((0[,]𝑁) ∩ ℤ) ∈ V
4342a1i 11 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
442adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ})
4528adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
46 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
4746elin2d 4134 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ)
4846elin1d 4133 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁))
49 nn0re 12251 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5049rexrd 11034 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
51 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = +∞ → 𝑁 = +∞)
52 pnfxr 11038 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
5351, 52eqeltrdi 2848 . . . . . . . . . . . . . . . . . . 19 (𝑁 = +∞ → 𝑁 ∈ ℝ*)
5450, 53jaoi 854 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑁 = +∞) → 𝑁 ∈ ℝ*)
5511, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ*)
5655adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*)
57 elicc1 13132 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
5813, 56, 57sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
5948, 58mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁))
6059simp2d 1142 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘)
61 elnn0z 12341 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
6247, 60, 61sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0)
63 dvnf 25100 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6444, 45, 62, 63syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6564, 9ffvelrnd 6971 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
6662faccld 14007 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ)
6766nncnd 11998 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ)
6866nnne0d 12032 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0)
6965, 67, 68divcld 11760 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
70 0cnd 10977 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ∈ ℂ)
7170, 62expcld 13873 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (0↑𝑘) ∈ ℂ)
7269, 71mulcld 11004 . . . . . . . 8 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) ∈ ℂ)
7372fmpttd 6998 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
74 eldifi 4062 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
7574, 62sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ0)
76 eldifsni 4724 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ≠ 0)
7776adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ≠ 0)
78 elnnne0 12256 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
7975, 77, 78sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ)
80790expd 13866 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (0↑𝑘) = 0)
8180oveq2d 7300 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0))
8269mul01d 11183 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8374, 82sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8481, 83eqtrd 2779 . . . . . . . 8 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = 0)
85 zex 12337 . . . . . . . . . 10 ℤ ∈ V
8685inex2 5243 . . . . . . . . 9 ((0[,]𝑁) ∩ ℤ) ∈ V
8786a1i 11 . . . . . . . 8 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
8884, 87suppss2 8025 . . . . . . 7 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})
8936, 37, 40, 43, 22, 73, 88gsumpt 19572 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0))
906fveq1d 6785 . . . . . . . . . 10 (𝑘 = 0 → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) = (((𝑆 D𝑛 𝐹)‘0)‘𝐵))
91 fveq2 6783 . . . . . . . . . . 11 (𝑘 = 0 → (!‘𝑘) = (!‘0))
92 fac0 13999 . . . . . . . . . . 11 (!‘0) = 1
9391, 92eqtrdi 2795 . . . . . . . . . 10 (𝑘 = 0 → (!‘𝑘) = 1)
9490, 93oveq12d 7302 . . . . . . . . 9 (𝑘 = 0 → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1))
95 oveq2 7292 . . . . . . . . . 10 (𝑘 = 0 → (0↑𝑘) = (0↑0))
96 0exp0e1 13796 . . . . . . . . . 10 (0↑0) = 1
9795, 96eqtrdi 2795 . . . . . . . . 9 (𝑘 = 0 → (0↑𝑘) = 1)
9894, 97oveq12d 7302 . . . . . . . 8 (𝑘 = 0 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
99 eqid 2739 . . . . . . . 8 (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
100 ovex 7317 . . . . . . . 8 (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) ∈ V
10198, 99, 100fvmpt 6884 . . . . . . 7 (0 ∈ ((0[,]𝑁) ∩ ℤ) → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10222, 101syl 17 . . . . . 6 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10330fveq1d 6785 . . . . . . . . . 10 (𝜑 → (((𝑆 D𝑛 𝐹)‘0)‘𝐵) = (𝐹𝐵))
104103oveq1d 7299 . . . . . . . . 9 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = ((𝐹𝐵) / 1))
10526, 34ffvelrnd 6971 . . . . . . . . . 10 (𝜑 → (𝐹𝐵) ∈ ℂ)
106105div1d 11752 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) / 1) = (𝐹𝐵))
107104, 106eqtrd 2779 . . . . . . . 8 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = (𝐹𝐵))
108107oveq1d 7299 . . . . . . 7 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = ((𝐹𝐵) · 1))
109105mulid1d 11001 . . . . . . 7 (𝜑 → ((𝐹𝐵) · 1) = (𝐹𝐵))
110108, 109eqtrd 2779 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = (𝐹𝐵))
11189, 102, 1103eqtrd 2783 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = (𝐹𝐵))
112 ringcmn 19829 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
11338, 112mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
114 cnfldtps 23950 . . . . . . 7 fld ∈ TopSp
115114a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ TopSp)
116 mptexg 7106 . . . . . . . 8 (((0[,]𝑁) ∩ ℤ) ∈ V → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
11786, 116mp1i 13 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
118 funmpt 6479 . . . . . . . 8 Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
119118a1i 11 . . . . . . 7 (𝜑 → Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
120 c0ex 10978 . . . . . . . 8 0 ∈ V
121120a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
122 snfi 8843 . . . . . . . 8 {0} ∈ Fin
123122a1i 11 . . . . . . 7 (𝜑 → {0} ∈ Fin)
124 suppssfifsupp 9152 . . . . . . 7 ((((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V ∧ Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∧ 0 ∈ V) ∧ ({0} ∈ Fin ∧ ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
125117, 119, 121, 123, 88, 124syl32anc 1377 . . . . . 6 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
12636, 37, 113, 115, 43, 73, 125tsmsid 23300 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
127111, 126eqeltrrd 2841 . . . 4 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
12835subidd 11329 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
129128oveq1d 7299 . . . . . . 7 (𝜑 → ((𝐵𝐵)↑𝑘) = (0↑𝑘))
130129oveq2d 7300 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
131130mpteq2dv 5177 . . . . 5 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
132131oveq2d 7300 . . . 4 (𝜑 → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
133127, 132eleqtrrd 2843 . . 3 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))
134 taylfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
1352, 26, 1, 11, 9, 134eltayl 25528 . . 3 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ ℂ ∧ (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))))
13635, 133, 135mpbir2and 710 . 2 (𝜑𝐵𝑇(𝐹𝐵))
1372, 26, 1, 11, 9, 134taylf 25529 . . 3 (𝜑𝑇:dom 𝑇⟶ℂ)
138 ffun 6612 . . 3 (𝑇:dom 𝑇⟶ℂ → Fun 𝑇)
139 funbrfv2b 6836 . . 3 (Fun 𝑇 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
140137, 138, 1393syl 18 . 2 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
141136, 140mpbid 231 1 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107  wne 2944  Vcvv 3433  cdif 3885  cin 3887  wss 3888  {csn 4562  {cpr 4564   class class class wbr 5075  cmpt 5158  dom cdm 5590  Fun wfun 6431  wf 6433  cfv 6437  (class class class)co 7284   supp csupp 7986  pm cpm 8625  Fincfn 8742   finSupp cfsupp 9137  cc 10878  cr 10879  0cc0 10880  1c1 10881   · cmul 10885  +∞cpnf 11015  *cxr 11017  cle 11019  cmin 11214   / cdiv 11641  cn 11982  0cn0 12242  0*cxnn0 12314  cz 12328  [,]cicc 13091  cexp 13791  !cfa 13996   Σg cgsu 17160  Mndcmnd 18394  CMndccmn 19395  Ringcrg 19792  fldccnfld 20606  TopSpctps 22090   tsums ctsu 23286   D𝑛 cdvn 25037   Tayl ctayl 25521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-xnn0 12315  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-icc 13095  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-fac 13997  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-grp 18589  df-minusg 18590  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cnp 22388  df-haus 22475  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-tsms 23287  df-xms 23482  df-ms 23483  df-limc 25039  df-dv 25040  df-dvn 25041  df-tayl 25523
This theorem is referenced by:  dvntaylp0  25540
  Copyright terms: Public domain W3C validator