MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tayl0 Structured version   Visualization version   GIF version

Theorem tayl0 26418
Description: The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
tayl0 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem tayl0
StepHypRef Expression
1 taylfval.a . . . . 5 (𝜑𝐴𝑆)
2 taylfval.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
3 recnprss 25954 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
42, 3syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
51, 4sstrd 4006 . . . 4 (𝜑𝐴 ⊆ ℂ)
6 fveq2 6907 . . . . . . . 8 (𝑘 = 0 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘0))
76dmeqd 5919 . . . . . . 7 (𝑘 = 0 → dom ((𝑆 D𝑛 𝐹)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘0))
87eleq2d 2825 . . . . . 6 (𝑘 = 0 → (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0)))
9 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
109ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
11 taylfval.n . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
12 elxnn0 12599 . . . . . . . . 9 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
13 0xr 11306 . . . . . . . . . . 11 0 ∈ ℝ*
1413a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ∈ ℝ*)
15 xnn0xr 12602 . . . . . . . . . 10 (𝑁 ∈ ℕ0*𝑁 ∈ ℝ*)
16 xnn0ge0 13173 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ≤ 𝑁)
17 lbicc2 13501 . . . . . . . . . 10 ((0 ∈ ℝ*𝑁 ∈ ℝ* ∧ 0 ≤ 𝑁) → 0 ∈ (0[,]𝑁))
1814, 15, 16, 17syl3anc 1370 . . . . . . . . 9 (𝑁 ∈ ℕ0* → 0 ∈ (0[,]𝑁))
1912, 18sylbir 235 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 = +∞) → 0 ∈ (0[,]𝑁))
2011, 19syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0[,]𝑁))
21 0zd 12623 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
2220, 21elind 4210 . . . . . 6 (𝜑 → 0 ∈ ((0[,]𝑁) ∩ ℤ))
238, 10, 22rspcdva 3623 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0))
24 cnex 11234 . . . . . . . . . 10 ℂ ∈ V
2524a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
26 taylfval.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
27 elpm2r 8884 . . . . . . . . 9 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2825, 2, 26, 1, 27syl22anc 839 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
29 dvn0 25975 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
304, 28, 29syl2anc 584 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
3130dmeqd 5919 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = dom 𝐹)
3226fdmd 6747 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3331, 32eqtrd 2775 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = 𝐴)
3423, 33eleqtrd 2841 . . . 4 (𝜑𝐵𝐴)
355, 34sseldd 3996 . . 3 (𝜑𝐵 ∈ ℂ)
36 cnfldbas 21386 . . . . . . 7 ℂ = (Base‘ℂfld)
37 cnfld0 21423 . . . . . . 7 0 = (0g‘ℂfld)
38 cnring 21421 . . . . . . . 8 fld ∈ Ring
39 ringmnd 20261 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4038, 39mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ Mnd)
41 ovex 7464 . . . . . . . . 9 (0[,]𝑁) ∈ V
4241inex1 5323 . . . . . . . 8 ((0[,]𝑁) ∩ ℤ) ∈ V
4342a1i 11 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
442adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ})
4528adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
46 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
4746elin2d 4215 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ)
4846elin1d 4214 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁))
49 nn0re 12533 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5049rexrd 11309 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
51 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = +∞ → 𝑁 = +∞)
52 pnfxr 11313 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
5351, 52eqeltrdi 2847 . . . . . . . . . . . . . . . . . . 19 (𝑁 = +∞ → 𝑁 ∈ ℝ*)
5450, 53jaoi 857 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑁 = +∞) → 𝑁 ∈ ℝ*)
5511, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ*)
5655adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*)
57 elicc1 13428 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
5813, 56, 57sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
5948, 58mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁))
6059simp2d 1142 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘)
61 elnn0z 12624 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
6247, 60, 61sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0)
63 dvnf 25978 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6444, 45, 62, 63syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6564, 9ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
6662faccld 14320 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ)
6766nncnd 12280 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ)
6866nnne0d 12314 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0)
6965, 67, 68divcld 12041 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
70 0cnd 11252 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ∈ ℂ)
7170, 62expcld 14183 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (0↑𝑘) ∈ ℂ)
7269, 71mulcld 11279 . . . . . . . 8 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) ∈ ℂ)
7372fmpttd 7135 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
74 eldifi 4141 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
7574, 62sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ0)
76 eldifsni 4795 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ≠ 0)
7776adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ≠ 0)
78 elnnne0 12538 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
7975, 77, 78sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ)
80790expd 14176 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (0↑𝑘) = 0)
8180oveq2d 7447 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0))
8269mul01d 11458 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8374, 82sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8481, 83eqtrd 2775 . . . . . . . 8 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = 0)
85 zex 12620 . . . . . . . . . 10 ℤ ∈ V
8685inex2 5324 . . . . . . . . 9 ((0[,]𝑁) ∩ ℤ) ∈ V
8786a1i 11 . . . . . . . 8 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
8884, 87suppss2 8224 . . . . . . 7 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})
8936, 37, 40, 43, 22, 73, 88gsumpt 19995 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0))
906fveq1d 6909 . . . . . . . . . 10 (𝑘 = 0 → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) = (((𝑆 D𝑛 𝐹)‘0)‘𝐵))
91 fveq2 6907 . . . . . . . . . . 11 (𝑘 = 0 → (!‘𝑘) = (!‘0))
92 fac0 14312 . . . . . . . . . . 11 (!‘0) = 1
9391, 92eqtrdi 2791 . . . . . . . . . 10 (𝑘 = 0 → (!‘𝑘) = 1)
9490, 93oveq12d 7449 . . . . . . . . 9 (𝑘 = 0 → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1))
95 oveq2 7439 . . . . . . . . . 10 (𝑘 = 0 → (0↑𝑘) = (0↑0))
96 0exp0e1 14104 . . . . . . . . . 10 (0↑0) = 1
9795, 96eqtrdi 2791 . . . . . . . . 9 (𝑘 = 0 → (0↑𝑘) = 1)
9894, 97oveq12d 7449 . . . . . . . 8 (𝑘 = 0 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
99 eqid 2735 . . . . . . . 8 (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
100 ovex 7464 . . . . . . . 8 (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) ∈ V
10198, 99, 100fvmpt 7016 . . . . . . 7 (0 ∈ ((0[,]𝑁) ∩ ℤ) → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10222, 101syl 17 . . . . . 6 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10330fveq1d 6909 . . . . . . . . . 10 (𝜑 → (((𝑆 D𝑛 𝐹)‘0)‘𝐵) = (𝐹𝐵))
104103oveq1d 7446 . . . . . . . . 9 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = ((𝐹𝐵) / 1))
10526, 34ffvelcdmd 7105 . . . . . . . . . 10 (𝜑 → (𝐹𝐵) ∈ ℂ)
106105div1d 12033 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) / 1) = (𝐹𝐵))
107104, 106eqtrd 2775 . . . . . . . 8 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = (𝐹𝐵))
108107oveq1d 7446 . . . . . . 7 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = ((𝐹𝐵) · 1))
109105mulridd 11276 . . . . . . 7 (𝜑 → ((𝐹𝐵) · 1) = (𝐹𝐵))
110108, 109eqtrd 2775 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = (𝐹𝐵))
11189, 102, 1103eqtrd 2779 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = (𝐹𝐵))
112 ringcmn 20296 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
11338, 112mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
114 cnfldtps 24814 . . . . . . 7 fld ∈ TopSp
115114a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ TopSp)
116 mptexg 7241 . . . . . . . 8 (((0[,]𝑁) ∩ ℤ) ∈ V → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
11786, 116mp1i 13 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
118 funmpt 6606 . . . . . . . 8 Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
119118a1i 11 . . . . . . 7 (𝜑 → Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
120 c0ex 11253 . . . . . . . 8 0 ∈ V
121120a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
122 snfi 9082 . . . . . . . 8 {0} ∈ Fin
123122a1i 11 . . . . . . 7 (𝜑 → {0} ∈ Fin)
124 suppssfifsupp 9418 . . . . . . 7 ((((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V ∧ Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∧ 0 ∈ V) ∧ ({0} ∈ Fin ∧ ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
125117, 119, 121, 123, 88, 124syl32anc 1377 . . . . . 6 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
12636, 37, 113, 115, 43, 73, 125tsmsid 24164 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
127111, 126eqeltrrd 2840 . . . 4 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
12835subidd 11606 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
129128oveq1d 7446 . . . . . . 7 (𝜑 → ((𝐵𝐵)↑𝑘) = (0↑𝑘))
130129oveq2d 7447 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
131130mpteq2dv 5250 . . . . 5 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
132131oveq2d 7447 . . . 4 (𝜑 → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
133127, 132eleqtrrd 2842 . . 3 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))
134 taylfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
1352, 26, 1, 11, 9, 134eltayl 26416 . . 3 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ ℂ ∧ (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))))
13635, 133, 135mpbir2and 713 . 2 (𝜑𝐵𝑇(𝐹𝐵))
1372, 26, 1, 11, 9, 134taylf 26417 . . 3 (𝜑𝑇:dom 𝑇⟶ℂ)
138 ffun 6740 . . 3 (𝑇:dom 𝑇⟶ℂ → Fun 𝑇)
139 funbrfv2b 6966 . . 3 (Fun 𝑇 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
140137, 138, 1393syl 18 . 2 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
141136, 140mpbid 232 1 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  cin 3962  wss 3963  {csn 4631  {cpr 4633   class class class wbr 5148  cmpt 5231  dom cdm 5689  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431   supp csupp 8184  pm cpm 8866  Fincfn 8984   finSupp cfsupp 9399  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158  +∞cpnf 11290  *cxr 11292  cle 11294  cmin 11490   / cdiv 11918  cn 12264  0cn0 12524  0*cxnn0 12597  cz 12611  [,]cicc 13387  cexp 14099  !cfa 14309   Σg cgsu 17487  Mndcmnd 18760  CMndccmn 19813  Ringcrg 20251  fldccnfld 21382  TopSpctps 22954   tsums ctsu 24150   D𝑛 cdvn 25914   Tayl ctayl 26409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-ur 20200  df-ring 20253  df-cring 20254  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cnp 23252  df-haus 23339  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tsms 24151  df-xms 24346  df-ms 24347  df-limc 25916  df-dv 25917  df-dvn 25918  df-tayl 26411
This theorem is referenced by:  dvntaylp0  26429
  Copyright terms: Public domain W3C validator