MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tayl0 Structured version   Visualization version   GIF version

Theorem tayl0 25519
Description: The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
tayl0 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)

Proof of Theorem tayl0
StepHypRef Expression
1 taylfval.a . . . . 5 (𝜑𝐴𝑆)
2 taylfval.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
3 recnprss 25066 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
42, 3syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
51, 4sstrd 3932 . . . 4 (𝜑𝐴 ⊆ ℂ)
6 fveq2 6776 . . . . . . . 8 (𝑘 = 0 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘0))
76dmeqd 5816 . . . . . . 7 (𝑘 = 0 → dom ((𝑆 D𝑛 𝐹)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘0))
87eleq2d 2824 . . . . . 6 (𝑘 = 0 → (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0)))
9 taylfval.b . . . . . . 7 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
109ralrimiva 3103 . . . . . 6 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
11 taylfval.n . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
12 elxnn0 12305 . . . . . . . . 9 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
13 0xr 11020 . . . . . . . . . . 11 0 ∈ ℝ*
1413a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ∈ ℝ*)
15 xnn0xr 12308 . . . . . . . . . 10 (𝑁 ∈ ℕ0*𝑁 ∈ ℝ*)
16 xnn0ge0 12867 . . . . . . . . . 10 (𝑁 ∈ ℕ0* → 0 ≤ 𝑁)
17 lbicc2 13194 . . . . . . . . . 10 ((0 ∈ ℝ*𝑁 ∈ ℝ* ∧ 0 ≤ 𝑁) → 0 ∈ (0[,]𝑁))
1814, 15, 16, 17syl3anc 1370 . . . . . . . . 9 (𝑁 ∈ ℕ0* → 0 ∈ (0[,]𝑁))
1912, 18sylbir 234 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 = +∞) → 0 ∈ (0[,]𝑁))
2011, 19syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0[,]𝑁))
21 0zd 12329 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
2220, 21elind 4129 . . . . . 6 (𝜑 → 0 ∈ ((0[,]𝑁) ∩ ℤ))
238, 10, 22rspcdva 3563 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘0))
24 cnex 10950 . . . . . . . . . 10 ℂ ∈ V
2524a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
26 taylfval.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
27 elpm2r 8631 . . . . . . . . 9 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2825, 2, 26, 1, 27syl22anc 836 . . . . . . . 8 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
29 dvn0 25086 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
304, 28, 29syl2anc 584 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
3130dmeqd 5816 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = dom 𝐹)
3226fdmd 6613 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3331, 32eqtrd 2778 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘0) = 𝐴)
3423, 33eleqtrd 2841 . . . 4 (𝜑𝐵𝐴)
355, 34sseldd 3923 . . 3 (𝜑𝐵 ∈ ℂ)
36 cnfldbas 20599 . . . . . . 7 ℂ = (Base‘ℂfld)
37 cnfld0 20620 . . . . . . 7 0 = (0g‘ℂfld)
38 cnring 20618 . . . . . . . 8 fld ∈ Ring
39 ringmnd 19791 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
4038, 39mp1i 13 . . . . . . 7 (𝜑 → ℂfld ∈ Mnd)
41 ovex 7310 . . . . . . . . 9 (0[,]𝑁) ∈ V
4241inex1 5243 . . . . . . . 8 ((0[,]𝑁) ∩ ℤ) ∈ V
4342a1i 11 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
442adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑆 ∈ {ℝ, ℂ})
4528adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
46 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
4746elin2d 4134 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℤ)
4846elin1d 4133 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ (0[,]𝑁))
49 nn0re 12240 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5049rexrd 11023 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
51 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = +∞ → 𝑁 = +∞)
52 pnfxr 11027 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
5351, 52eqeltrdi 2847 . . . . . . . . . . . . . . . . . . 19 (𝑁 = +∞ → 𝑁 ∈ ℝ*)
5450, 53jaoi 854 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑁 = +∞) → 𝑁 ∈ ℝ*)
5511, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℝ*)
5655adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑁 ∈ ℝ*)
57 elicc1 13121 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
5813, 56, 57sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ (0[,]𝑁) ↔ (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁)))
5948, 58mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (𝑘 ∈ ℝ* ∧ 0 ≤ 𝑘𝑘𝑁))
6059simp2d 1142 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ≤ 𝑘)
61 elnn0z 12330 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
6247, 60, 61sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝑘 ∈ ℕ0)
63 dvnf 25089 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6444, 45, 62, 63syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
6564, 9ffvelrnd 6964 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
6662faccld 13996 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℕ)
6766nncnd 11987 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ∈ ℂ)
6866nnne0d 12021 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (!‘𝑘) ≠ 0)
6965, 67, 68divcld 11749 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
70 0cnd 10966 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 0 ∈ ℂ)
7170, 62expcld 13862 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (0↑𝑘) ∈ ℂ)
7269, 71mulcld 10993 . . . . . . . 8 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) ∈ ℂ)
7372fmpttd 6991 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))):((0[,]𝑁) ∩ ℤ)⟶ℂ)
74 eldifi 4062 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ∈ ((0[,]𝑁) ∩ ℤ))
7574, 62sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ0)
76 eldifsni 4725 . . . . . . . . . . . . 13 (𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0}) → 𝑘 ≠ 0)
7776adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ≠ 0)
78 elnnne0 12245 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
7975, 77, 78sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → 𝑘 ∈ ℕ)
80790expd 13855 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (0↑𝑘) = 0)
8180oveq2d 7293 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0))
8269mul01d 11172 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8374, 82sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
8481, 83eqtrd 2778 . . . . . . . 8 ((𝜑𝑘 ∈ (((0[,]𝑁) ∩ ℤ) ∖ {0})) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = 0)
85 zex 12326 . . . . . . . . . 10 ℤ ∈ V
8685inex2 5244 . . . . . . . . 9 ((0[,]𝑁) ∩ ℤ) ∈ V
8786a1i 11 . . . . . . . 8 (𝜑 → ((0[,]𝑁) ∩ ℤ) ∈ V)
8884, 87suppss2 8014 . . . . . . 7 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})
8936, 37, 40, 43, 22, 73, 88gsumpt 19561 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0))
906fveq1d 6778 . . . . . . . . . 10 (𝑘 = 0 → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) = (((𝑆 D𝑛 𝐹)‘0)‘𝐵))
91 fveq2 6776 . . . . . . . . . . 11 (𝑘 = 0 → (!‘𝑘) = (!‘0))
92 fac0 13988 . . . . . . . . . . 11 (!‘0) = 1
9391, 92eqtrdi 2794 . . . . . . . . . 10 (𝑘 = 0 → (!‘𝑘) = 1)
9490, 93oveq12d 7295 . . . . . . . . 9 (𝑘 = 0 → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1))
95 oveq2 7285 . . . . . . . . . 10 (𝑘 = 0 → (0↑𝑘) = (0↑0))
96 0exp0e1 13785 . . . . . . . . . 10 (0↑0) = 1
9795, 96eqtrdi 2794 . . . . . . . . 9 (𝑘 = 0 → (0↑𝑘) = 1)
9894, 97oveq12d 7295 . . . . . . . 8 (𝑘 = 0 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
99 eqid 2738 . . . . . . . 8 (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
100 ovex 7310 . . . . . . . 8 (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) ∈ V
10198, 99, 100fvmpt 6877 . . . . . . 7 (0 ∈ ((0[,]𝑁) ∩ ℤ) → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10222, 101syl 17 . . . . . 6 (𝜑 → ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))‘0) = (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1))
10330fveq1d 6778 . . . . . . . . . 10 (𝜑 → (((𝑆 D𝑛 𝐹)‘0)‘𝐵) = (𝐹𝐵))
104103oveq1d 7292 . . . . . . . . 9 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = ((𝐹𝐵) / 1))
10526, 34ffvelrnd 6964 . . . . . . . . . 10 (𝜑 → (𝐹𝐵) ∈ ℂ)
106105div1d 11741 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) / 1) = (𝐹𝐵))
107104, 106eqtrd 2778 . . . . . . . 8 (𝜑 → ((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) = (𝐹𝐵))
108107oveq1d 7292 . . . . . . 7 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = ((𝐹𝐵) · 1))
109105mulid1d 10990 . . . . . . 7 (𝜑 → ((𝐹𝐵) · 1) = (𝐹𝐵))
110108, 109eqtrd 2778 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘0)‘𝐵) / 1) · 1) = (𝐹𝐵))
11189, 102, 1103eqtrd 2782 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) = (𝐹𝐵))
112 ringcmn 19818 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
11338, 112mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
114 cnfldtps 23939 . . . . . . 7 fld ∈ TopSp
115114a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ TopSp)
116 mptexg 7099 . . . . . . . 8 (((0[,]𝑁) ∩ ℤ) ∈ V → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
11786, 116mp1i 13 . . . . . . 7 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V)
118 funmpt 6474 . . . . . . . 8 Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
119118a1i 11 . . . . . . 7 (𝜑 → Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
120 c0ex 10967 . . . . . . . 8 0 ∈ V
121120a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
122 snfi 8832 . . . . . . . 8 {0} ∈ Fin
123122a1i 11 . . . . . . 7 (𝜑 → {0} ∈ Fin)
124 suppssfifsupp 9141 . . . . . . 7 ((((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∈ V ∧ Fun (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) ∧ 0 ∈ V) ∧ ({0} ∈ Fin ∧ ((𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) supp 0) ⊆ {0})) → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
125117, 119, 121, 123, 88, 124syl32anc 1377 . . . . . 6 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))) finSupp 0)
12636, 37, 113, 115, 43, 73, 125tsmsid 23289 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
127111, 126eqeltrrd 2840 . . . 4 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
12835subidd 11318 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
129128oveq1d 7292 . . . . . . 7 (𝜑 → ((𝐵𝐵)↑𝑘) = (0↑𝑘))
130129oveq2d 7293 . . . . . 6 (𝜑 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))
131130mpteq2dv 5178 . . . . 5 (𝜑 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘))))
132131oveq2d 7293 . . . 4 (𝜑 → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (0↑𝑘)))))
133127, 132eleqtrrd 2842 . . 3 (𝜑 → (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))
134 taylfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
1352, 26, 1, 11, 9, 134eltayl 25517 . . 3 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ ℂ ∧ (𝐹𝐵) ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝐵𝐵)↑𝑘)))))))
13635, 133, 135mpbir2and 710 . 2 (𝜑𝐵𝑇(𝐹𝐵))
1372, 26, 1, 11, 9, 134taylf 25518 . . 3 (𝜑𝑇:dom 𝑇⟶ℂ)
138 ffun 6605 . . 3 (𝑇:dom 𝑇⟶ℂ → Fun 𝑇)
139 funbrfv2b 6829 . . 3 (Fun 𝑇 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
140137, 138, 1393syl 18 . 2 (𝜑 → (𝐵𝑇(𝐹𝐵) ↔ (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵))))
141136, 140mpbid 231 1 (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇𝐵) = (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3431  cdif 3885  cin 3887  wss 3888  {csn 4563  {cpr 4565   class class class wbr 5076  cmpt 5159  dom cdm 5591  Fun wfun 6429  wf 6431  cfv 6435  (class class class)co 7277   supp csupp 7975  pm cpm 8614  Fincfn 8731   finSupp cfsupp 9126  cc 10867  cr 10868  0cc0 10869  1c1 10870   · cmul 10874  +∞cpnf 11004  *cxr 11006  cle 11008  cmin 11203   / cdiv 11630  cn 11971  0cn0 12231  0*cxnn0 12303  cz 12317  [,]cicc 13080  cexp 13780  !cfa 13985   Σg cgsu 17149  Mndcmnd 18383  CMndccmn 19384  Ringcrg 19781  fldccnfld 20595  TopSpctps 22079   tsums ctsu 23275   D𝑛 cdvn 25026   Tayl ctayl 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947  ax-addf 10948  ax-mulf 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7976  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-map 8615  df-pm 8616  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-fsupp 9127  df-fi 9168  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-xnn0 12304  df-z 12318  df-dec 12436  df-uz 12581  df-q 12687  df-rp 12729  df-xneg 12846  df-xadd 12847  df-xmul 12848  df-icc 13084  df-fz 13238  df-fzo 13381  df-seq 13720  df-exp 13781  df-fac 13986  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-grp 18578  df-minusg 18579  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cnp 22377  df-haus 22464  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-tsms 23276  df-xms 23471  df-ms 23472  df-limc 25028  df-dv 25029  df-dvn 25030  df-tayl 25512
This theorem is referenced by:  dvntaylp0  25529
  Copyright terms: Public domain W3C validator