MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xrge0 Structured version   Visualization version   GIF version

Theorem xnn0xrge0 13542
Description: An extended nonnegative integer is an extended nonnegative real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xrge0 (𝐴 ∈ ℕ0*𝐴 ∈ (0[,]+∞))

Proof of Theorem xnn0xrge0
StepHypRef Expression
1 elxnn0 12598 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 12532 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32rexrd 11308 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
4 nn0ge0 12548 . . . 4 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
5 elxrge0 13493 . . . 4 (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
63, 4, 5sylanbrc 583 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ (0[,]+∞))
7 0xr 11305 . . . . 5 0 ∈ ℝ*
8 pnfxr 11312 . . . . 5 +∞ ∈ ℝ*
9 0lepnf 13171 . . . . 5 0 ≤ +∞
10 ubicc2 13501 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
117, 8, 9, 10mp3an 1460 . . . 4 +∞ ∈ (0[,]+∞)
12 eleq1 2826 . . . 4 (𝐴 = +∞ → (𝐴 ∈ (0[,]+∞) ↔ +∞ ∈ (0[,]+∞)))
1311, 12mpbiri 258 . . 3 (𝐴 = +∞ → 𝐴 ∈ (0[,]+∞))
146, 13jaoi 857 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ∈ (0[,]+∞))
151, 14sylbi 217 1 (𝐴 ∈ ℕ0*𝐴 ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  0cc0 11152  +∞cpnf 11289  *cxr 11291  cle 11293  0cn0 12523  0*cxnn0 12596  [,]cicc 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-xnn0 12597  df-icc 13390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator