MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coiun Structured version   Visualization version   GIF version

Theorem coiun 6276
Description: Composition with an indexed union. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
coiun (𝐴 𝑥𝐶 𝐵) = 𝑥𝐶 (𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem coiun
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6126 . 2 Rel (𝐴 𝑥𝐶 𝐵)
2 reliun 5826 . . 3 (Rel 𝑥𝐶 (𝐴𝐵) ↔ ∀𝑥𝐶 Rel (𝐴𝐵))
3 relco 6126 . . . 4 Rel (𝐴𝐵)
43a1i 11 . . 3 (𝑥𝐶 → Rel (𝐴𝐵))
52, 4mprgbir 3068 . 2 Rel 𝑥𝐶 (𝐴𝐵)
6 eliun 4995 . . . . . . . . 9 (⟨𝑦, 𝑤⟩ ∈ 𝑥𝐶 𝐵 ↔ ∃𝑥𝐶𝑦, 𝑤⟩ ∈ 𝐵)
7 df-br 5144 . . . . . . . . 9 (𝑦 𝑥𝐶 𝐵𝑤 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝑥𝐶 𝐵)
8 df-br 5144 . . . . . . . . . 10 (𝑦𝐵𝑤 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝐵)
98rexbii 3094 . . . . . . . . 9 (∃𝑥𝐶 𝑦𝐵𝑤 ↔ ∃𝑥𝐶𝑦, 𝑤⟩ ∈ 𝐵)
106, 7, 93bitr4i 303 . . . . . . . 8 (𝑦 𝑥𝐶 𝐵𝑤 ↔ ∃𝑥𝐶 𝑦𝐵𝑤)
1110anbi1i 624 . . . . . . 7 ((𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ (∃𝑥𝐶 𝑦𝐵𝑤𝑤𝐴𝑧))
12 r19.41v 3189 . . . . . . 7 (∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧) ↔ (∃𝑥𝐶 𝑦𝐵𝑤𝑤𝐴𝑧))
1311, 12bitr4i 278 . . . . . 6 ((𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1413exbii 1848 . . . . 5 (∃𝑤(𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
15 rexcom4 3288 . . . . 5 (∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1614, 15bitr4i 278 . . . 4 (∃𝑤(𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
17 vex 3484 . . . . 5 𝑦 ∈ V
18 vex 3484 . . . . 5 𝑧 ∈ V
1917, 18opelco 5882 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐴 𝑥𝐶 𝐵) ↔ ∃𝑤(𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧))
2017, 18opelco 5882 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2120rexbii 3094 . . . 4 (∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2216, 19, 213bitr4i 303 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐴 𝑥𝐶 𝐵) ↔ ∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵))
23 eliun 4995 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵))
2422, 23bitr4i 278 . 2 (⟨𝑦, 𝑧⟩ ∈ (𝐴 𝑥𝐶 𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵))
251, 5, 24eqrelriiv 5800 1 (𝐴 𝑥𝐶 𝐵) = 𝑥𝐶 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3070  cop 4632   ciun 4991   class class class wbr 5143  ccom 5689  Rel wrel 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-iun 4993  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-co 5694
This theorem is referenced by:  fparlem3  8139  fparlem4  8140  trclrelexplem  43724  trclfvcom  43736
  Copyright terms: Public domain W3C validator