Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coiun1 Structured version   Visualization version   GIF version

Theorem coiun1 42866
Description: Composition with an indexed union. Proof analgous to that of coiun 6255. (Contributed by RP, 20-Jun-2020.)
Assertion
Ref Expression
coiun1 ( 𝑥𝐶 𝐴𝐵) = 𝑥𝐶 (𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem coiun1
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6107 . 2 Rel ( 𝑥𝐶 𝐴𝐵)
2 reliun 5816 . . 3 (Rel 𝑥𝐶 (𝐴𝐵) ↔ ∀𝑥𝐶 Rel (𝐴𝐵))
3 relco 6107 . . . 4 Rel (𝐴𝐵)
43a1i 11 . . 3 (𝑥𝐶 → Rel (𝐴𝐵))
52, 4mprgbir 3067 . 2 Rel 𝑥𝐶 (𝐴𝐵)
6 eliun 5001 . . . . . . . 8 (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐶 𝐴 ↔ ∃𝑥𝐶𝑤, 𝑧⟩ ∈ 𝐴)
7 df-br 5149 . . . . . . . 8 (𝑤 𝑥𝐶 𝐴𝑧 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥𝐶 𝐴)
8 df-br 5149 . . . . . . . . 9 (𝑤𝐴𝑧 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝐴)
98rexbii 3093 . . . . . . . 8 (∃𝑥𝐶 𝑤𝐴𝑧 ↔ ∃𝑥𝐶𝑤, 𝑧⟩ ∈ 𝐴)
106, 7, 93bitr4i 303 . . . . . . 7 (𝑤 𝑥𝐶 𝐴𝑧 ↔ ∃𝑥𝐶 𝑤𝐴𝑧)
1110anbi2i 622 . . . . . 6 ((𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ (𝑦𝐵𝑤 ∧ ∃𝑥𝐶 𝑤𝐴𝑧))
12 r19.42v 3189 . . . . . 6 (∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧) ↔ (𝑦𝐵𝑤 ∧ ∃𝑥𝐶 𝑤𝐴𝑧))
1311, 12bitr4i 278 . . . . 5 ((𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1413exbii 1849 . . . 4 (∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
15 rexcom4 3284 . . . 4 (∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1614, 15bitr4i 278 . . 3 (∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
17 vex 3477 . . . 4 𝑦 ∈ V
18 vex 3477 . . . 4 𝑧 ∈ V
1917, 18opelco 5871 . . 3 (⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐶 𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧))
20 eliun 5001 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵))
2117, 18opelco 5871 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2221rexbii 3093 . . . 4 (∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2320, 22bitri 275 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2416, 19, 233bitr4i 303 . 2 (⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐶 𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵))
251, 5, 24eqrelriiv 5790 1 ( 𝑥𝐶 𝐴𝐵) = 𝑥𝐶 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1780  wcel 2105  wrex 3069  cop 4634   ciun 4997   class class class wbr 5148  ccom 5680  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-co 5685
This theorem is referenced by:  trclfvcom  42937  trclfvdecomr  42942  cotrclrcl  42956
  Copyright terms: Public domain W3C validator