Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coiun1 Structured version   Visualization version   GIF version

Theorem coiun1 41260
Description: Composition with an indexed union. Proof analgous to that of coiun 6160. (Contributed by RP, 20-Jun-2020.)
Assertion
Ref Expression
coiun1 ( 𝑥𝐶 𝐴𝐵) = 𝑥𝐶 (𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem coiun1
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6148 . 2 Rel ( 𝑥𝐶 𝐴𝐵)
2 reliun 5726 . . 3 (Rel 𝑥𝐶 (𝐴𝐵) ↔ ∀𝑥𝐶 Rel (𝐴𝐵))
3 relco 6148 . . . 4 Rel (𝐴𝐵)
43a1i 11 . . 3 (𝑥𝐶 → Rel (𝐴𝐵))
52, 4mprgbir 3079 . 2 Rel 𝑥𝐶 (𝐴𝐵)
6 eliun 4928 . . . . . . . 8 (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐶 𝐴 ↔ ∃𝑥𝐶𝑤, 𝑧⟩ ∈ 𝐴)
7 df-br 5075 . . . . . . . 8 (𝑤 𝑥𝐶 𝐴𝑧 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥𝐶 𝐴)
8 df-br 5075 . . . . . . . . 9 (𝑤𝐴𝑧 ↔ ⟨𝑤, 𝑧⟩ ∈ 𝐴)
98rexbii 3181 . . . . . . . 8 (∃𝑥𝐶 𝑤𝐴𝑧 ↔ ∃𝑥𝐶𝑤, 𝑧⟩ ∈ 𝐴)
106, 7, 93bitr4i 303 . . . . . . 7 (𝑤 𝑥𝐶 𝐴𝑧 ↔ ∃𝑥𝐶 𝑤𝐴𝑧)
1110anbi2i 623 . . . . . 6 ((𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ (𝑦𝐵𝑤 ∧ ∃𝑥𝐶 𝑤𝐴𝑧))
12 r19.42v 3279 . . . . . 6 (∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧) ↔ (𝑦𝐵𝑤 ∧ ∃𝑥𝐶 𝑤𝐴𝑧))
1311, 12bitr4i 277 . . . . 5 ((𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1413exbii 1850 . . . 4 (∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
15 rexcom4 3233 . . . 4 (∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1614, 15bitr4i 277 . . 3 (∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
17 vex 3436 . . . 4 𝑦 ∈ V
18 vex 3436 . . . 4 𝑧 ∈ V
1917, 18opelco 5780 . . 3 (⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐶 𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤 𝑥𝐶 𝐴𝑧))
20 eliun 4928 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵))
2117, 18opelco 5780 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2221rexbii 3181 . . . 4 (∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2320, 22bitri 274 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2416, 19, 233bitr4i 303 . 2 (⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐶 𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵))
251, 5, 24eqrelriiv 5700 1 ( 𝑥𝐶 𝐴𝐵) = 𝑥𝐶 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  cop 4567   ciun 4924   class class class wbr 5074  ccom 5593  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-co 5598
This theorem is referenced by:  trclfvcom  41331  trclfvdecomr  41336  cotrclrcl  41350
  Copyright terms: Public domain W3C validator