Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcl Structured version   Visualization version   GIF version

Theorem eqvrelcl 37470
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelcl.1 (𝜑 → EqvRel 𝑅)
eqvrelcl.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelcl (𝜑𝐴 ∈ dom 𝑅)

Proof of Theorem eqvrelcl
StepHypRef Expression
1 eqvrelcl.1 . . 3 (𝜑 → EqvRel 𝑅)
2 eqvrelrel 37455 . . 3 ( EqvRel 𝑅 → Rel 𝑅)
31, 2syl 17 . 2 (𝜑 → Rel 𝑅)
4 eqvrelcl.2 . 2 (𝜑𝐴𝑅𝐵)
5 releldm 5941 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
63, 4, 5syl2anc 584 1 (𝜑𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5147  dom cdm 5675  Rel wrel 5680   EqvRel weqvrel 37048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-refrel 37370  df-symrel 37402  df-trrel 37432  df-eqvrel 37443
This theorem is referenced by:  eqvrelthi  37471  erimeq2  37536
  Copyright terms: Public domain W3C validator