Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcl Structured version   Visualization version   GIF version

Theorem eqvrelcl 38608
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelcl.1 (𝜑 → EqvRel 𝑅)
eqvrelcl.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelcl (𝜑𝐴 ∈ dom 𝑅)

Proof of Theorem eqvrelcl
StepHypRef Expression
1 eqvrelcl.1 . . 3 (𝜑 → EqvRel 𝑅)
2 eqvrelrel 38593 . . 3 ( EqvRel 𝑅 → Rel 𝑅)
31, 2syl 17 . 2 (𝜑 → Rel 𝑅)
4 eqvrelcl.2 . 2 (𝜑𝐴𝑅𝐵)
5 releldm 5962 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
63, 4, 5syl2anc 584 1 (𝜑𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5151  dom cdm 5693  Rel wrel 5698   EqvRel weqvrel 38193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-refrel 38508  df-symrel 38540  df-trrel 38570  df-eqvrel 38581
This theorem is referenced by:  eqvrelthi  38609  erimeq2  38674
  Copyright terms: Public domain W3C validator