![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelcl | Structured version Visualization version GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelcl.1 | ⊢ (𝜑 → EqvRel 𝑅) |
eqvrelcl.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
eqvrelcl | ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelcl.1 | . . 3 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | eqvrelrel 38097 | . . 3 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → Rel 𝑅) |
4 | eqvrelcl.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 5938 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 582 | 1 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 class class class wbr 5141 dom cdm 5670 Rel wrel 5675 EqvRel weqvrel 37694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-refrel 38012 df-symrel 38044 df-trrel 38074 df-eqvrel 38085 |
This theorem is referenced by: eqvrelthi 38113 erimeq2 38178 |
Copyright terms: Public domain | W3C validator |