![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelcl | Structured version Visualization version GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelcl.1 | ⊢ (𝜑 → EqvRel 𝑅) |
eqvrelcl.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
eqvrelcl | ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelcl.1 | . . 3 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | eqvrelrel 38593 | . . 3 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → Rel 𝑅) |
4 | eqvrelcl.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 5962 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5151 dom cdm 5693 Rel wrel 5698 EqvRel weqvrel 38193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-refrel 38508 df-symrel 38540 df-trrel 38570 df-eqvrel 38581 |
This theorem is referenced by: eqvrelthi 38609 erimeq2 38674 |
Copyright terms: Public domain | W3C validator |