![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelcl | Structured version Visualization version GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelcl.1 | ⊢ (𝜑 → EqvRel 𝑅) |
eqvrelcl.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
eqvrelcl | ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelcl.1 | . . 3 ⊢ (𝜑 → EqvRel 𝑅) | |
2 | eqvrelrel 37455 | . . 3 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → Rel 𝑅) |
4 | eqvrelcl.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 5941 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5147 dom cdm 5675 Rel wrel 5680 EqvRel weqvrel 37048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-refrel 37370 df-symrel 37402 df-trrel 37432 df-eqvrel 37443 |
This theorem is referenced by: eqvrelthi 37471 erimeq2 37536 |
Copyright terms: Public domain | W3C validator |