Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelthi | Structured version Visualization version GIF version |
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelthi.1 | ⊢ (𝜑 → EqvRel 𝑅) |
eqvrelthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
eqvrelthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | eqvrelthi.1 | . . 3 ⊢ (𝜑 → EqvRel 𝑅) | |
3 | 2, 1 | eqvrelcl 36288 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
4 | 2, 3 | eqvrelth 36287 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
5 | 1, 4 | mpbid 235 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5033 [cec 8298 EqvRel weqvrel 35911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ec 8302 df-refrel 36193 df-symrel 36221 df-trrel 36251 df-eqvrel 36261 |
This theorem is referenced by: eqvreldisj 36290 eqvrelqsel 36292 |
Copyright terms: Public domain | W3C validator |