Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelthi Structured version   Visualization version   GIF version

Theorem eqvrelthi 38141
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelthi.1 (𝜑 → EqvRel 𝑅)
eqvrelthi.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelthi (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)

Proof of Theorem eqvrelthi
StepHypRef Expression
1 eqvrelthi.2 . 2 (𝜑𝐴𝑅𝐵)
2 eqvrelthi.1 . . 3 (𝜑 → EqvRel 𝑅)
32, 1eqvrelcl 38140 . . 3 (𝜑𝐴 ∈ dom 𝑅)
42, 3eqvrelth 38139 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
51, 4mpbid 231 1 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533   class class class wbr 5143  [cec 8721   EqvRel weqvrel 37722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8725  df-refrel 38040  df-symrel 38072  df-trrel 38102  df-eqvrel 38113
This theorem is referenced by:  eqvreldisj  38142  eqvrelqsel  38144
  Copyright terms: Public domain W3C validator