![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelthi | Structured version Visualization version GIF version |
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelthi.1 | ⊢ (𝜑 → EqvRel 𝑅) |
eqvrelthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
eqvrelthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | eqvrelthi.1 | . . 3 ⊢ (𝜑 → EqvRel 𝑅) | |
3 | 2, 1 | eqvrelcl 37103 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
4 | 2, 3 | eqvrelth 37102 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
5 | 1, 4 | mpbid 231 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 class class class wbr 5110 [cec 8653 EqvRel weqvrel 36680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8657 df-refrel 37003 df-symrel 37035 df-trrel 37065 df-eqvrel 37076 |
This theorem is referenced by: eqvreldisj 37105 eqvrelqsel 37107 |
Copyright terms: Public domain | W3C validator |