| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelthi | Structured version Visualization version GIF version | ||
| Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvrelthi.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| eqvrelthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| eqvrelthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | eqvrelthi.1 | . . 3 ⊢ (𝜑 → EqvRel 𝑅) | |
| 3 | 2, 1 | eqvrelcl 38648 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 4 | 2, 3 | eqvrelth 38647 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5091 [cec 8620 EqvRel weqvrel 38231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-refrel 38548 df-symrel 38580 df-trrel 38610 df-eqvrel 38621 |
| This theorem is referenced by: eqvreldisj 38650 eqvrelqsel 38652 |
| Copyright terms: Public domain | W3C validator |