Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelthi Structured version   Visualization version   GIF version

Theorem eqvrelthi 36726
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelthi.1 (𝜑 → EqvRel 𝑅)
eqvrelthi.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelthi (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)

Proof of Theorem eqvrelthi
StepHypRef Expression
1 eqvrelthi.2 . 2 (𝜑𝐴𝑅𝐵)
2 eqvrelthi.1 . . 3 (𝜑 → EqvRel 𝑅)
32, 1eqvrelcl 36725 . . 3 (𝜑𝐴 ∈ dom 𝑅)
42, 3eqvrelth 36724 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
51, 4mpbid 231 1 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   class class class wbr 5074  [cec 8496   EqvRel weqvrel 36350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-refrel 36630  df-symrel 36658  df-trrel 36688  df-eqvrel 36698
This theorem is referenced by:  eqvreldisj  36727  eqvrelqsel  36729
  Copyright terms: Public domain W3C validator