Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelthi Structured version   Visualization version   GIF version

Theorem eqvrelthi 38729
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelthi.1 (𝜑 → EqvRel 𝑅)
eqvrelthi.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
eqvrelthi (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)

Proof of Theorem eqvrelthi
StepHypRef Expression
1 eqvrelthi.2 . 2 (𝜑𝐴𝑅𝐵)
2 eqvrelthi.1 . . 3 (𝜑 → EqvRel 𝑅)
32, 1eqvrelcl 38728 . . 3 (𝜑𝐴 ∈ dom 𝑅)
42, 3eqvrelth 38727 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
51, 4mpbid 232 1 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5093  [cec 8626   EqvRel weqvrel 38259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-refrel 38624  df-symrel 38656  df-trrel 38690  df-eqvrel 38701
This theorem is referenced by:  eqvreldisj  38730  eqvrelqsel  38732
  Copyright terms: Public domain W3C validator