| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrel0 | Structured version Visualization version GIF version | ||
| Description: The null class is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqvrel0 | ⊢ EqvRel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjALTV0 38872 | . . 3 ⊢ Disj ∅ | |
| 2 | 1 | disjimi 38900 | . 2 ⊢ EqvRel ≀ ∅ |
| 3 | coss0 38601 | . . 3 ⊢ ≀ ∅ = ∅ | |
| 4 | 3 | eqvreleqi 38719 | . 2 ⊢ ( EqvRel ≀ ∅ ↔ EqvRel ∅) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ EqvRel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4282 ≀ ccoss 38242 EqvRel weqvrel 38259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-coss 38533 df-refrel 38624 df-cnvrefrel 38639 df-symrel 38656 df-trrel 38690 df-eqvrel 38701 df-disjALTV 38823 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |