| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrel0 | Structured version Visualization version GIF version | ||
| Description: The null class is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqvrel0 | ⊢ EqvRel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjALTV0 38746 | . . 3 ⊢ Disj ∅ | |
| 2 | 1 | disjimi 38774 | . 2 ⊢ EqvRel ≀ ∅ |
| 3 | coss0 38470 | . . 3 ⊢ ≀ ∅ = ∅ | |
| 4 | 3 | eqvreleqi 38594 | . 2 ⊢ ( EqvRel ≀ ∅ ↔ EqvRel ∅) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ EqvRel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4296 ≀ ccoss 38169 EqvRel weqvrel 38186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-coss 38402 df-refrel 38503 df-cnvrefrel 38518 df-symrel 38535 df-trrel 38565 df-eqvrel 38576 df-disjALTV 38697 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |