Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldmqs2 Structured version   Visualization version   GIF version

Theorem eqvreldmqs2 36896
Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024.)
Assertion
Ref Expression
eqvreldmqs2 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem eqvreldmqs2
StepHypRef Expression
1 df-coels 36632 . . . 4 𝐴 = ≀ ( E ↾ 𝐴)
21eqvreleqi 36823 . . 3 ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
32bicomi 223 . 2 ( EqvRel ≀ ( E ↾ 𝐴) ↔ EqvRel ∼ 𝐴)
4 dmqs1cosscnvepreseq 36882 . 2 ((dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴 ↔ ( 𝐴 /𝐴) = 𝐴)
53, 4anbi12i 628 1 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1539   cuni 4844   E cep 5505  ccnv 5599  dom cdm 5600  cres 5602   / cqs 8528  ccoss 36387  ccoels 36388   EqvRel weqvrel 36404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-coss 36631  df-coels 36632  df-refrel 36732  df-symrel 36764  df-trrel 36794  df-eqvrel 36805
This theorem is referenced by:  cpet2  37057
  Copyright terms: Public domain W3C validator