![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldmqs2 | Structured version Visualization version GIF version |
Description: Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024.) |
Ref | Expression |
---|---|
eqvreldmqs2 | ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coels 37795 | . . . 4 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
2 | 1 | eqvreleqi 37986 | . . 3 ⊢ ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
3 | 2 | bicomi 223 | . 2 ⊢ ( EqvRel ≀ (◡ E ↾ 𝐴) ↔ EqvRel ∼ 𝐴) |
4 | dmqs1cosscnvepreseq 38045 | . 2 ⊢ ((dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) | |
5 | 3, 4 | anbi12i 626 | 1 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∪ cuni 4902 E cep 5572 ◡ccnv 5668 dom cdm 5669 ↾ cres 5671 / cqs 8704 ≀ ccoss 37556 ∼ ccoels 37557 EqvRel weqvrel 37573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-eprel 5573 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ec 8707 df-qs 8711 df-coss 37794 df-coels 37795 df-refrel 37895 df-symrel 37927 df-trrel 37957 df-eqvrel 37968 |
This theorem is referenced by: cpet2 38220 |
Copyright terms: Public domain | W3C validator |