Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erthi | Structured version Visualization version GIF version |
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | 2, 1 | ercl 8509 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
4 | 2, 3 | erth 8547 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
5 | 1, 4 | mpbid 231 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5074 Er wer 8495 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-er 8498 df-ec 8500 |
This theorem is referenced by: erdisj 8550 qsel 8585 addsrmo 10829 mulsrmo 10830 qusgrp2 18693 frgpinv 19370 qustgpopn 23271 blpnfctr 23589 pi1inv 24215 pi1xfrf 24216 pi1xfr 24218 pi1xfrcnvlem 24219 pi1cof 24222 vitalilem3 24774 sconnpi1 33201 qsalrel 40215 |
Copyright terms: Public domain | W3C validator |