| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erthi | Structured version Visualization version GIF version | ||
| Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | 2, 1 | ercl 8643 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 4 | 2, 3 | erth 8686 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5095 Er wer 8629 [cec 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-er 8632 df-ec 8634 |
| This theorem is referenced by: erdisj 8689 qsel 8730 addsrmo 10986 mulsrmo 10987 qusgrp2 18955 frgpinv 19661 qustgpopn 24023 blpnfctr 24340 pi1inv 24968 pi1xfrf 24969 pi1xfr 24971 pi1xfrcnvlem 24972 pi1cof 24975 vitalilem3 25527 rloccring 33220 fracfld 33257 qsdrngilem 33441 zringfrac 33501 sconnpi1 35211 qsalrel 42213 |
| Copyright terms: Public domain | W3C validator |