![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erthi | Structured version Visualization version GIF version |
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | 2, 1 | ercl 7993 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
4 | 2, 3 | erth 8029 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
5 | 1, 4 | mpbid 224 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 class class class wbr 4843 Er wer 7979 [cec 7980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-er 7982 df-ec 7984 |
This theorem is referenced by: erdisj 8032 qsel 8064 addsrmo 10182 mulsrmo 10183 qusgrp2 17849 frgpinv 18492 qustgpopn 22251 blpnfctr 22569 pi1inv 23179 pi1xfrf 23180 pi1xfr 23182 pi1xfrcnvlem 23183 pi1cof 23186 vitalilem3 23718 sconnpi1 31738 |
Copyright terms: Public domain | W3C validator |