MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erthi Structured version   Visualization version   GIF version

Theorem erthi 8727
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
erthi.1 (𝜑𝑅 Er 𝑋)
erthi.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
erthi (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)

Proof of Theorem erthi
StepHypRef Expression
1 erthi.2 . 2 (𝜑𝐴𝑅𝐵)
2 erthi.1 . . 3 (𝜑𝑅 Er 𝑋)
32, 1ercl 8682 . . 3 (𝜑𝐴𝑋)
42, 3erth 8725 . 2 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
51, 4mpbid 232 1 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5107   Er wer 8668  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-er 8671  df-ec 8673
This theorem is referenced by:  erdisj  8728  qsel  8769  addsrmo  11026  mulsrmo  11027  qusgrp2  18990  frgpinv  19694  qustgpopn  24007  blpnfctr  24324  pi1inv  24952  pi1xfrf  24953  pi1xfr  24955  pi1xfrcnvlem  24956  pi1cof  24959  vitalilem3  25511  rloccring  33221  fracfld  33258  qsdrngilem  33465  zringfrac  33525  sconnpi1  35226  qsalrel  42228
  Copyright terms: Public domain W3C validator