| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erthi | Structured version Visualization version GIF version | ||
| Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | 2, 1 | ercl 8682 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 4 | 2, 3 | erth 8725 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5107 Er wer 8668 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-er 8671 df-ec 8673 |
| This theorem is referenced by: erdisj 8728 qsel 8769 addsrmo 11026 mulsrmo 11027 qusgrp2 18990 frgpinv 19694 qustgpopn 24007 blpnfctr 24324 pi1inv 24952 pi1xfrf 24953 pi1xfr 24955 pi1xfrcnvlem 24956 pi1cof 24959 vitalilem3 25511 rloccring 33221 fracfld 33258 qsdrngilem 33465 zringfrac 33525 sconnpi1 35226 qsalrel 42228 |
| Copyright terms: Public domain | W3C validator |