Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erthi | Structured version Visualization version GIF version |
Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | 2, 1 | ercl 8467 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
4 | 2, 3 | erth 8505 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
5 | 1, 4 | mpbid 231 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5070 Er wer 8453 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-er 8456 df-ec 8458 |
This theorem is referenced by: erdisj 8508 qsel 8543 addsrmo 10760 mulsrmo 10761 qusgrp2 18608 frgpinv 19285 qustgpopn 23179 blpnfctr 23497 pi1inv 24121 pi1xfrf 24122 pi1xfr 24124 pi1xfrcnvlem 24125 pi1cof 24128 vitalilem3 24679 sconnpi1 33101 qsalrel 40141 |
Copyright terms: Public domain | W3C validator |