| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erthi | Structured version Visualization version GIF version | ||
| Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | 2, 1 | ercl 8639 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 4 | 2, 3 | erth 8682 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5093 Er wer 8625 [cec 8626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-er 8628 df-ec 8630 |
| This theorem is referenced by: erdisj 8685 qsel 8726 addsrmo 10971 mulsrmo 10972 qusgrp2 18973 frgpinv 19678 qustgpopn 24036 blpnfctr 24352 pi1inv 24980 pi1xfrf 24981 pi1xfr 24983 pi1xfrcnvlem 24984 pi1cof 24987 vitalilem3 25539 rloccring 33244 fracfld 33281 qsdrngilem 33466 zringfrac 33526 sconnpi1 35304 qsalrel 42358 |
| Copyright terms: Public domain | W3C validator |