| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erthi | Structured version Visualization version GIF version | ||
| Description: Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| erthi.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erthi.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| erthi | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erthi.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | erthi.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | 2, 1 | ercl 8685 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 4 | 2, 3 | erth 8728 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5110 Er wer 8671 [cec 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-er 8674 df-ec 8676 |
| This theorem is referenced by: erdisj 8731 qsel 8772 addsrmo 11033 mulsrmo 11034 qusgrp2 18997 frgpinv 19701 qustgpopn 24014 blpnfctr 24331 pi1inv 24959 pi1xfrf 24960 pi1xfr 24962 pi1xfrcnvlem 24963 pi1cof 24966 vitalilem3 25518 rloccring 33228 fracfld 33265 qsdrngilem 33472 zringfrac 33532 sconnpi1 35233 qsalrel 42235 |
| Copyright terms: Public domain | W3C validator |