MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr4d Structured version   Visualization version   GIF version

Theorem ertr4d 8764
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertr4d.5 (𝜑𝐴𝑅𝐵)
ertr4d.6 (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
ertr4d (𝜑𝐴𝑅𝐶)

Proof of Theorem ertr4d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertr4d.5 . 2 (𝜑𝐴𝑅𝐵)
3 ertr4d.6 . . 3 (𝜑𝐶𝑅𝐵)
41, 3ersym 8757 . 2 (𝜑𝐵𝑅𝐶)
51, 2, 4ertrd 8761 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5143   Er wer 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-er 8745
This theorem is referenced by:  erref  8765  erdisj  8799  nqereu  10969  nqereq  10975  efgredeu  19770  pi1xfr  25088  pi1xfrcnvlem  25089  prjspner1  42636
  Copyright terms: Public domain W3C validator