MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr4d Structured version   Visualization version   GIF version

Theorem ertr4d 8721
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertr4d.5 (𝜑𝐴𝑅𝐵)
ertr4d.6 (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
ertr4d (𝜑𝐴𝑅𝐶)

Proof of Theorem ertr4d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertr4d.5 . 2 (𝜑𝐴𝑅𝐵)
3 ertr4d.6 . . 3 (𝜑𝐶𝑅𝐵)
41, 3ersym 8714 . 2 (𝜑𝐵𝑅𝐶)
51, 2, 4ertrd 8718 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5148   Er wer 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-er 8702
This theorem is referenced by:  erref  8722  erdisj  8754  nqereu  10923  nqereq  10929  efgredeu  19619  pi1xfr  24570  pi1xfrcnvlem  24571  prjspner1  41369
  Copyright terms: Public domain W3C validator