| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ertr4d | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ertr4d.5 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| ertr4d.6 | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| ertr4d | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | ertr4d.5 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 3 | ertr4d.6 | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 4 | 1, 3 | ersym 8683 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) |
| 5 | 1, 2, 4 | ertrd 8687 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5107 Er wer 8668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-er 8671 |
| This theorem is referenced by: erref 8691 erdisj 8728 nqereu 10882 nqereq 10888 efgredeu 19682 pi1xfr 24955 pi1xfrcnvlem 24956 prjspner1 42614 |
| Copyright terms: Public domain | W3C validator |