| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ertr4d | Structured version Visualization version GIF version | ||
| Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ertr4d.5 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| ertr4d.6 | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| ertr4d | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | ertr4d.5 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 3 | ertr4d.6 | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 4 | 1, 3 | ersym 8634 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) |
| 5 | 1, 2, 4 | ertrd 8638 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5091 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-er 8622 |
| This theorem is referenced by: erref 8642 erdisj 8679 nqereu 10817 nqereq 10823 efgredeu 19662 pi1xfr 24980 pi1xfrcnvlem 24981 prjspner1 42658 |
| Copyright terms: Public domain | W3C validator |