Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ertr4d | Structured version Visualization version GIF version |
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ertr4d.5 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
ertr4d.6 | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
ertr4d | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersymb.1 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | ertr4d.5 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | ertr4d.6 | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
4 | 1, 3 | ersym 8510 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) |
5 | 1, 2, 4 | ertrd 8514 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5074 Er wer 8495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-er 8498 |
This theorem is referenced by: erref 8518 erdisj 8550 nqereu 10685 nqereq 10691 efgredeu 19358 pi1xfr 24218 pi1xfrcnvlem 24219 prjspner1 40463 |
Copyright terms: Public domain | W3C validator |