MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr4d Structured version   Visualization version   GIF version

Theorem ertr4d 8475
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertr4d.5 (𝜑𝐴𝑅𝐵)
ertr4d.6 (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
ertr4d (𝜑𝐴𝑅𝐶)

Proof of Theorem ertr4d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertr4d.5 . 2 (𝜑𝐴𝑅𝐵)
3 ertr4d.6 . . 3 (𝜑𝐶𝑅𝐵)
41, 3ersym 8468 . 2 (𝜑𝐵𝑅𝐶)
51, 2, 4ertrd 8472 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5070   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-er 8456
This theorem is referenced by:  erref  8476  erdisj  8508  nqereu  10616  nqereq  10622  efgredeu  19273  pi1xfr  24124  pi1xfrcnvlem  24125  prjspner1  40384
  Copyright terms: Public domain W3C validator