MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredeu Structured version   Visualization version   GIF version

Theorem efgredeu 18881
Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgredeu (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Distinct variable groups:   𝐴,𝑑   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊   ,𝑑,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑑   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑑,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgredeu
Dummy variables 𝑎 𝑏 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 18868 . . . 4 𝑆:dom 𝑆onto𝑊
8 foelrn 6875 . . . 4 ((𝑆:dom 𝑆onto𝑊𝐴𝑊) → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
97, 8mpan 688 . . 3 (𝐴𝑊 → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
101, 2, 3, 4, 5, 6efgsdm 18859 . . . . . . 7 (𝑎 ∈ dom 𝑆 ↔ (𝑎 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑎‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑎))(𝑎𝑖) ∈ ran (𝑇‘(𝑎‘(𝑖 − 1)))))
1110simp2bi 1142 . . . . . 6 (𝑎 ∈ dom 𝑆 → (𝑎‘0) ∈ 𝐷)
121, 2, 3, 4, 5, 6efgsrel 18863 . . . . . . 7 (𝑎 ∈ dom 𝑆 → (𝑎‘0) (𝑆𝑎))
1312adantl 484 . . . . . 6 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝑎‘0) (𝑆𝑎))
14 breq1 5072 . . . . . . 7 (𝑑 = (𝑎‘0) → (𝑑 (𝑆𝑎) ↔ (𝑎‘0) (𝑆𝑎)))
1514rspcev 3626 . . . . . 6 (((𝑎‘0) ∈ 𝐷 ∧ (𝑎‘0) (𝑆𝑎)) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
1611, 13, 15syl2an2 684 . . . . 5 ((𝐴𝑊𝑎 ∈ dom 𝑆) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
17 breq2 5073 . . . . . 6 (𝐴 = (𝑆𝑎) → (𝑑 𝐴𝑑 (𝑆𝑎)))
1817rexbidv 3300 . . . . 5 (𝐴 = (𝑆𝑎) → (∃𝑑𝐷 𝑑 𝐴 ↔ ∃𝑑𝐷 𝑑 (𝑆𝑎)))
1916, 18syl5ibrcom 249 . . . 4 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
2019rexlimdva 3287 . . 3 (𝐴𝑊 → (∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
219, 20mpd 15 . 2 (𝐴𝑊 → ∃𝑑𝐷 𝑑 𝐴)
221, 2efger 18847 . . . . . . 7 Er 𝑊
2322a1i 11 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → Er 𝑊)
24 simprl 769 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝐴)
25 simprr 771 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑐 𝐴)
2623, 24, 25ertr4d 8311 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝑐)
271, 2, 3, 4, 5, 6efgrelex 18880 . . . . . 6 (𝑑 𝑐 → ∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0))
28 fofn 6595 . . . . . . . . . . . . . 14 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
29 fniniseg 6833 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑)))
307, 28, 29mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑))
3130simplbi 500 . . . . . . . . . . . 12 (𝑎 ∈ (𝑆 “ {𝑑}) → 𝑎 ∈ dom 𝑆)
3231ad2antrl 726 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑎 ∈ dom 𝑆)
331, 2, 3, 4, 5, 6efgsval 18860 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3432, 33syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3530simprbi 499 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑑}) → (𝑆𝑎) = 𝑑)
3635ad2antrl 726 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = 𝑑)
37 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑑𝐷𝑐𝐷))
3837simpld 497 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑑𝐷)
3936, 38eqeltrd 2916 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) ∈ 𝐷)
401, 2, 3, 4, 5, 6efgs1b 18865 . . . . . . . . . . . . . . 15 (𝑎 ∈ dom 𝑆 → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4132, 40syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4239, 41mpbid 234 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑎) = 1)
4342oveq1d 7174 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = (1 − 1))
44 1m1e0 11712 . . . . . . . . . . . 12 (1 − 1) = 0
4543, 44syl6eq 2875 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = 0)
4645fveq2d 6677 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘((♯‘𝑎) − 1)) = (𝑎‘0))
4734, 36, 463eqtr3rd 2868 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘0) = 𝑑)
48 fniniseg 6833 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐)))
497, 28, 48mp2b 10 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐))
5049simplbi 500 . . . . . . . . . . . 12 (𝑏 ∈ (𝑆 “ {𝑐}) → 𝑏 ∈ dom 𝑆)
5150ad2antll 727 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑏 ∈ dom 𝑆)
521, 2, 3, 4, 5, 6efgsval 18860 . . . . . . . . . . 11 (𝑏 ∈ dom 𝑆 → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5351, 52syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5449simprbi 499 . . . . . . . . . . 11 (𝑏 ∈ (𝑆 “ {𝑐}) → (𝑆𝑏) = 𝑐)
5554ad2antll 727 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = 𝑐)
5637simprd 498 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑐𝐷)
5755, 56eqeltrd 2916 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) ∈ 𝐷)
581, 2, 3, 4, 5, 6efgs1b 18865 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom 𝑆 → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
5951, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
6057, 59mpbid 234 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑏) = 1)
6160oveq1d 7174 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = (1 − 1))
6261, 44syl6eq 2875 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = 0)
6362fveq2d 6677 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘((♯‘𝑏) − 1)) = (𝑏‘0))
6453, 55, 633eqtr3rd 2868 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘0) = 𝑐)
6547, 64eqeq12d 2840 . . . . . . . 8 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) ↔ 𝑑 = 𝑐))
6665biimpd 231 . . . . . . 7 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6766rexlimdvva 3297 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6827, 67syl5 34 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (𝑑 𝑐𝑑 = 𝑐))
6926, 68mpd 15 . . . 4 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 = 𝑐)
7069ex 415 . . 3 ((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) → ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
7170ralrimivva 3194 . 2 (𝐴𝑊 → ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
72 breq1 5072 . . 3 (𝑑 = 𝑐 → (𝑑 𝐴𝑐 𝐴))
7372reu4 3725 . 2 (∃!𝑑𝐷 𝑑 𝐴 ↔ (∃𝑑𝐷 𝑑 𝐴 ∧ ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐)))
7421, 71, 73sylanbrc 585 1 (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  ∃!wreu 3143  {crab 3145  cdif 3936  c0 4294  {csn 4570  cop 4576  cotp 4578   ciun 4922   class class class wbr 5069  cmpt 5149   I cid 5462   × cxp 5556  ccnv 5557  dom cdm 5558  ran crn 5559  cima 5561   Fn wfn 6353  ontowfo 6356  cfv 6358  (class class class)co 7159  cmpo 7161  1oc1o 8098  2oc2o 8099   Er wer 8289  0cc0 10540  1c1 10541  cmin 10873  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864   splice csplice 14114  ⟨“cs2 14206   ~FG cefg 18835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ec 8294  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-splice 14115  df-s2 14213  df-efg 18838
This theorem is referenced by:  efgred2  18882  frgpnabllem2  18997
  Copyright terms: Public domain W3C validator