MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredeu Structured version   Visualization version   GIF version

Theorem efgredeu 19733
Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgredeu (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Distinct variable groups:   𝐴,𝑑   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊   ,𝑑,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑑   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑑,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgredeu
Dummy variables 𝑎 𝑏 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 19720 . . . 4 𝑆:dom 𝑆onto𝑊
8 foelrn 7097 . . . 4 ((𝑆:dom 𝑆onto𝑊𝐴𝑊) → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
97, 8mpan 690 . . 3 (𝐴𝑊 → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
101, 2, 3, 4, 5, 6efgsdm 19711 . . . . . . 7 (𝑎 ∈ dom 𝑆 ↔ (𝑎 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑎‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑎))(𝑎𝑖) ∈ ran (𝑇‘(𝑎‘(𝑖 − 1)))))
1110simp2bi 1146 . . . . . 6 (𝑎 ∈ dom 𝑆 → (𝑎‘0) ∈ 𝐷)
121, 2, 3, 4, 5, 6efgsrel 19715 . . . . . . 7 (𝑎 ∈ dom 𝑆 → (𝑎‘0) (𝑆𝑎))
1312adantl 481 . . . . . 6 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝑎‘0) (𝑆𝑎))
14 breq1 5122 . . . . . . 7 (𝑑 = (𝑎‘0) → (𝑑 (𝑆𝑎) ↔ (𝑎‘0) (𝑆𝑎)))
1514rspcev 3601 . . . . . 6 (((𝑎‘0) ∈ 𝐷 ∧ (𝑎‘0) (𝑆𝑎)) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
1611, 13, 15syl2an2 686 . . . . 5 ((𝐴𝑊𝑎 ∈ dom 𝑆) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
17 breq2 5123 . . . . . 6 (𝐴 = (𝑆𝑎) → (𝑑 𝐴𝑑 (𝑆𝑎)))
1817rexbidv 3164 . . . . 5 (𝐴 = (𝑆𝑎) → (∃𝑑𝐷 𝑑 𝐴 ↔ ∃𝑑𝐷 𝑑 (𝑆𝑎)))
1916, 18syl5ibrcom 247 . . . 4 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
2019rexlimdva 3141 . . 3 (𝐴𝑊 → (∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
219, 20mpd 15 . 2 (𝐴𝑊 → ∃𝑑𝐷 𝑑 𝐴)
221, 2efger 19699 . . . . . . 7 Er 𝑊
2322a1i 11 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → Er 𝑊)
24 simprl 770 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝐴)
25 simprr 772 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑐 𝐴)
2623, 24, 25ertr4d 8738 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝑐)
271, 2, 3, 4, 5, 6efgrelex 19732 . . . . . 6 (𝑑 𝑐 → ∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0))
28 fofn 6792 . . . . . . . . . . . . . 14 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
29 fniniseg 7050 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑)))
307, 28, 29mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑))
3130simplbi 497 . . . . . . . . . . . 12 (𝑎 ∈ (𝑆 “ {𝑑}) → 𝑎 ∈ dom 𝑆)
3231ad2antrl 728 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑎 ∈ dom 𝑆)
331, 2, 3, 4, 5, 6efgsval 19712 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3432, 33syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3530simprbi 496 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑑}) → (𝑆𝑎) = 𝑑)
3635ad2antrl 728 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = 𝑑)
37 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑑𝐷𝑐𝐷))
3837simpld 494 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑑𝐷)
3936, 38eqeltrd 2834 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) ∈ 𝐷)
401, 2, 3, 4, 5, 6efgs1b 19717 . . . . . . . . . . . . . . 15 (𝑎 ∈ dom 𝑆 → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4132, 40syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4239, 41mpbid 232 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑎) = 1)
4342oveq1d 7420 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = (1 − 1))
44 1m1e0 12312 . . . . . . . . . . . 12 (1 − 1) = 0
4543, 44eqtrdi 2786 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = 0)
4645fveq2d 6880 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘((♯‘𝑎) − 1)) = (𝑎‘0))
4734, 36, 463eqtr3rd 2779 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘0) = 𝑑)
48 fniniseg 7050 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐)))
497, 28, 48mp2b 10 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐))
5049simplbi 497 . . . . . . . . . . . 12 (𝑏 ∈ (𝑆 “ {𝑐}) → 𝑏 ∈ dom 𝑆)
5150ad2antll 729 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑏 ∈ dom 𝑆)
521, 2, 3, 4, 5, 6efgsval 19712 . . . . . . . . . . 11 (𝑏 ∈ dom 𝑆 → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5351, 52syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5449simprbi 496 . . . . . . . . . . 11 (𝑏 ∈ (𝑆 “ {𝑐}) → (𝑆𝑏) = 𝑐)
5554ad2antll 729 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = 𝑐)
5637simprd 495 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑐𝐷)
5755, 56eqeltrd 2834 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) ∈ 𝐷)
581, 2, 3, 4, 5, 6efgs1b 19717 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom 𝑆 → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
5951, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
6057, 59mpbid 232 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑏) = 1)
6160oveq1d 7420 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = (1 − 1))
6261, 44eqtrdi 2786 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = 0)
6362fveq2d 6880 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘((♯‘𝑏) − 1)) = (𝑏‘0))
6453, 55, 633eqtr3rd 2779 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘0) = 𝑐)
6547, 64eqeq12d 2751 . . . . . . . 8 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) ↔ 𝑑 = 𝑐))
6665biimpd 229 . . . . . . 7 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6766rexlimdvva 3198 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6827, 67syl5 34 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (𝑑 𝑐𝑑 = 𝑐))
6926, 68mpd 15 . . . 4 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 = 𝑐)
7069ex 412 . . 3 ((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) → ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
7170ralrimivva 3187 . 2 (𝐴𝑊 → ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
72 breq1 5122 . . 3 (𝑑 = 𝑐 → (𝑑 𝐴𝑐 𝐴))
7372reu4 3714 . 2 (∃!𝑑𝐷 𝑑 𝐴 ↔ (∃𝑑𝐷 𝑑 𝐴 ∧ ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐)))
7421, 71, 73sylanbrc 583 1 (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ∃!wreu 3357  {crab 3415  cdif 3923  c0 4308  {csn 4601  cop 4607  cotp 4609   ciun 4967   class class class wbr 5119  cmpt 5201   I cid 5547   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657   Fn wfn 6526  ontowfo 6529  cfv 6531  (class class class)co 7405  cmpo 7407  1oc1o 8473  2oc2o 8474   Er wer 8716  0cc0 11129  1c1 11130  cmin 11466  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   splice csplice 14767  ⟨“cs2 14860   ~FG cefg 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-s2 14867  df-efg 19690
This theorem is referenced by:  efgred2  19734  frgpnabllem2  19855
  Copyright terms: Public domain W3C validator