MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredeu Structured version   Visualization version   GIF version

Theorem efgredeu 19794
Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgredeu (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Distinct variable groups:   𝐴,𝑑   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊   ,𝑑,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑑   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑑,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgredeu
Dummy variables 𝑎 𝑏 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 19781 . . . 4 𝑆:dom 𝑆onto𝑊
8 foelrn 7141 . . . 4 ((𝑆:dom 𝑆onto𝑊𝐴𝑊) → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
97, 8mpan 689 . . 3 (𝐴𝑊 → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
101, 2, 3, 4, 5, 6efgsdm 19772 . . . . . . 7 (𝑎 ∈ dom 𝑆 ↔ (𝑎 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑎‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑎))(𝑎𝑖) ∈ ran (𝑇‘(𝑎‘(𝑖 − 1)))))
1110simp2bi 1146 . . . . . 6 (𝑎 ∈ dom 𝑆 → (𝑎‘0) ∈ 𝐷)
121, 2, 3, 4, 5, 6efgsrel 19776 . . . . . . 7 (𝑎 ∈ dom 𝑆 → (𝑎‘0) (𝑆𝑎))
1312adantl 481 . . . . . 6 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝑎‘0) (𝑆𝑎))
14 breq1 5169 . . . . . . 7 (𝑑 = (𝑎‘0) → (𝑑 (𝑆𝑎) ↔ (𝑎‘0) (𝑆𝑎)))
1514rspcev 3635 . . . . . 6 (((𝑎‘0) ∈ 𝐷 ∧ (𝑎‘0) (𝑆𝑎)) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
1611, 13, 15syl2an2 685 . . . . 5 ((𝐴𝑊𝑎 ∈ dom 𝑆) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
17 breq2 5170 . . . . . 6 (𝐴 = (𝑆𝑎) → (𝑑 𝐴𝑑 (𝑆𝑎)))
1817rexbidv 3185 . . . . 5 (𝐴 = (𝑆𝑎) → (∃𝑑𝐷 𝑑 𝐴 ↔ ∃𝑑𝐷 𝑑 (𝑆𝑎)))
1916, 18syl5ibrcom 247 . . . 4 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
2019rexlimdva 3161 . . 3 (𝐴𝑊 → (∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
219, 20mpd 15 . 2 (𝐴𝑊 → ∃𝑑𝐷 𝑑 𝐴)
221, 2efger 19760 . . . . . . 7 Er 𝑊
2322a1i 11 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → Er 𝑊)
24 simprl 770 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝐴)
25 simprr 772 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑐 𝐴)
2623, 24, 25ertr4d 8782 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝑐)
271, 2, 3, 4, 5, 6efgrelex 19793 . . . . . 6 (𝑑 𝑐 → ∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0))
28 fofn 6836 . . . . . . . . . . . . . 14 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
29 fniniseg 7093 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑)))
307, 28, 29mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑))
3130simplbi 497 . . . . . . . . . . . 12 (𝑎 ∈ (𝑆 “ {𝑑}) → 𝑎 ∈ dom 𝑆)
3231ad2antrl 727 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑎 ∈ dom 𝑆)
331, 2, 3, 4, 5, 6efgsval 19773 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3432, 33syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3530simprbi 496 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑑}) → (𝑆𝑎) = 𝑑)
3635ad2antrl 727 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = 𝑑)
37 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑑𝐷𝑐𝐷))
3837simpld 494 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑑𝐷)
3936, 38eqeltrd 2844 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) ∈ 𝐷)
401, 2, 3, 4, 5, 6efgs1b 19778 . . . . . . . . . . . . . . 15 (𝑎 ∈ dom 𝑆 → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4132, 40syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4239, 41mpbid 232 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑎) = 1)
4342oveq1d 7463 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = (1 − 1))
44 1m1e0 12365 . . . . . . . . . . . 12 (1 − 1) = 0
4543, 44eqtrdi 2796 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = 0)
4645fveq2d 6924 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘((♯‘𝑎) − 1)) = (𝑎‘0))
4734, 36, 463eqtr3rd 2789 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘0) = 𝑑)
48 fniniseg 7093 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐)))
497, 28, 48mp2b 10 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐))
5049simplbi 497 . . . . . . . . . . . 12 (𝑏 ∈ (𝑆 “ {𝑐}) → 𝑏 ∈ dom 𝑆)
5150ad2antll 728 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑏 ∈ dom 𝑆)
521, 2, 3, 4, 5, 6efgsval 19773 . . . . . . . . . . 11 (𝑏 ∈ dom 𝑆 → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5351, 52syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5449simprbi 496 . . . . . . . . . . 11 (𝑏 ∈ (𝑆 “ {𝑐}) → (𝑆𝑏) = 𝑐)
5554ad2antll 728 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = 𝑐)
5637simprd 495 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑐𝐷)
5755, 56eqeltrd 2844 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) ∈ 𝐷)
581, 2, 3, 4, 5, 6efgs1b 19778 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom 𝑆 → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
5951, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
6057, 59mpbid 232 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑏) = 1)
6160oveq1d 7463 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = (1 − 1))
6261, 44eqtrdi 2796 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = 0)
6362fveq2d 6924 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘((♯‘𝑏) − 1)) = (𝑏‘0))
6453, 55, 633eqtr3rd 2789 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘0) = 𝑐)
6547, 64eqeq12d 2756 . . . . . . . 8 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) ↔ 𝑑 = 𝑐))
6665biimpd 229 . . . . . . 7 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6766rexlimdvva 3219 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6827, 67syl5 34 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (𝑑 𝑐𝑑 = 𝑐))
6926, 68mpd 15 . . . 4 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 = 𝑐)
7069ex 412 . . 3 ((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) → ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
7170ralrimivva 3208 . 2 (𝐴𝑊 → ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
72 breq1 5169 . . 3 (𝑑 = 𝑐 → (𝑑 𝐴𝑐 𝐴))
7372reu4 3753 . 2 (∃!𝑑𝐷 𝑑 𝐴 ↔ (∃𝑑𝐷 𝑑 𝐴 ∧ ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐)))
7421, 71, 73sylanbrc 582 1 (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  cdif 3973  c0 4352  {csn 4648  cop 4654  cotp 4656   ciun 5015   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  ontowfo 6571  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516   Er wer 8760  0cc0 11184  1c1 11185  cmin 11520  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   splice csplice 14797  ⟨“cs2 14890   ~FG cefg 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-s2 14897  df-efg 19751
This theorem is referenced by:  efgred2  19795  frgpnabllem2  19916
  Copyright terms: Public domain W3C validator