MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredeu Structured version   Visualization version   GIF version

Theorem efgredeu 19785
Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgredeu (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Distinct variable groups:   𝐴,𝑑   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊   ,𝑑,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑑   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑑,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgredeu
Dummy variables 𝑎 𝑏 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 19772 . . . 4 𝑆:dom 𝑆onto𝑊
8 foelrn 7127 . . . 4 ((𝑆:dom 𝑆onto𝑊𝐴𝑊) → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
97, 8mpan 690 . . 3 (𝐴𝑊 → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
101, 2, 3, 4, 5, 6efgsdm 19763 . . . . . . 7 (𝑎 ∈ dom 𝑆 ↔ (𝑎 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑎‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑎))(𝑎𝑖) ∈ ran (𝑇‘(𝑎‘(𝑖 − 1)))))
1110simp2bi 1145 . . . . . 6 (𝑎 ∈ dom 𝑆 → (𝑎‘0) ∈ 𝐷)
121, 2, 3, 4, 5, 6efgsrel 19767 . . . . . . 7 (𝑎 ∈ dom 𝑆 → (𝑎‘0) (𝑆𝑎))
1312adantl 481 . . . . . 6 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝑎‘0) (𝑆𝑎))
14 breq1 5151 . . . . . . 7 (𝑑 = (𝑎‘0) → (𝑑 (𝑆𝑎) ↔ (𝑎‘0) (𝑆𝑎)))
1514rspcev 3622 . . . . . 6 (((𝑎‘0) ∈ 𝐷 ∧ (𝑎‘0) (𝑆𝑎)) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
1611, 13, 15syl2an2 686 . . . . 5 ((𝐴𝑊𝑎 ∈ dom 𝑆) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
17 breq2 5152 . . . . . 6 (𝐴 = (𝑆𝑎) → (𝑑 𝐴𝑑 (𝑆𝑎)))
1817rexbidv 3177 . . . . 5 (𝐴 = (𝑆𝑎) → (∃𝑑𝐷 𝑑 𝐴 ↔ ∃𝑑𝐷 𝑑 (𝑆𝑎)))
1916, 18syl5ibrcom 247 . . . 4 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
2019rexlimdva 3153 . . 3 (𝐴𝑊 → (∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
219, 20mpd 15 . 2 (𝐴𝑊 → ∃𝑑𝐷 𝑑 𝐴)
221, 2efger 19751 . . . . . . 7 Er 𝑊
2322a1i 11 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → Er 𝑊)
24 simprl 771 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝐴)
25 simprr 773 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑐 𝐴)
2623, 24, 25ertr4d 8763 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝑐)
271, 2, 3, 4, 5, 6efgrelex 19784 . . . . . 6 (𝑑 𝑐 → ∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0))
28 fofn 6823 . . . . . . . . . . . . . 14 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
29 fniniseg 7080 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑)))
307, 28, 29mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑))
3130simplbi 497 . . . . . . . . . . . 12 (𝑎 ∈ (𝑆 “ {𝑑}) → 𝑎 ∈ dom 𝑆)
3231ad2antrl 728 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑎 ∈ dom 𝑆)
331, 2, 3, 4, 5, 6efgsval 19764 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3432, 33syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3530simprbi 496 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑑}) → (𝑆𝑎) = 𝑑)
3635ad2antrl 728 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = 𝑑)
37 simpllr 776 . . . . . . . . . . . . . . . 16 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑑𝐷𝑐𝐷))
3837simpld 494 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑑𝐷)
3936, 38eqeltrd 2839 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) ∈ 𝐷)
401, 2, 3, 4, 5, 6efgs1b 19769 . . . . . . . . . . . . . . 15 (𝑎 ∈ dom 𝑆 → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4132, 40syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4239, 41mpbid 232 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑎) = 1)
4342oveq1d 7446 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = (1 − 1))
44 1m1e0 12336 . . . . . . . . . . . 12 (1 − 1) = 0
4543, 44eqtrdi 2791 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = 0)
4645fveq2d 6911 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘((♯‘𝑎) − 1)) = (𝑎‘0))
4734, 36, 463eqtr3rd 2784 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘0) = 𝑑)
48 fniniseg 7080 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐)))
497, 28, 48mp2b 10 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐))
5049simplbi 497 . . . . . . . . . . . 12 (𝑏 ∈ (𝑆 “ {𝑐}) → 𝑏 ∈ dom 𝑆)
5150ad2antll 729 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑏 ∈ dom 𝑆)
521, 2, 3, 4, 5, 6efgsval 19764 . . . . . . . . . . 11 (𝑏 ∈ dom 𝑆 → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5351, 52syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5449simprbi 496 . . . . . . . . . . 11 (𝑏 ∈ (𝑆 “ {𝑐}) → (𝑆𝑏) = 𝑐)
5554ad2antll 729 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = 𝑐)
5637simprd 495 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑐𝐷)
5755, 56eqeltrd 2839 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) ∈ 𝐷)
581, 2, 3, 4, 5, 6efgs1b 19769 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom 𝑆 → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
5951, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
6057, 59mpbid 232 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑏) = 1)
6160oveq1d 7446 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = (1 − 1))
6261, 44eqtrdi 2791 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = 0)
6362fveq2d 6911 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘((♯‘𝑏) − 1)) = (𝑏‘0))
6453, 55, 633eqtr3rd 2784 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘0) = 𝑐)
6547, 64eqeq12d 2751 . . . . . . . 8 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) ↔ 𝑑 = 𝑐))
6665biimpd 229 . . . . . . 7 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6766rexlimdvva 3211 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6827, 67syl5 34 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (𝑑 𝑐𝑑 = 𝑐))
6926, 68mpd 15 . . . 4 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 = 𝑐)
7069ex 412 . . 3 ((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) → ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
7170ralrimivva 3200 . 2 (𝐴𝑊 → ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
72 breq1 5151 . . 3 (𝑑 = 𝑐 → (𝑑 𝐴𝑐 𝐴))
7372reu4 3740 . 2 (∃!𝑑𝐷 𝑑 𝐴 ↔ (∃𝑑𝐷 𝑑 𝐴 ∧ ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐)))
7421, 71, 73sylanbrc 583 1 (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376  {crab 3433  cdif 3960  c0 4339  {csn 4631  cop 4637  cotp 4639   ciun 4996   class class class wbr 5148  cmpt 5231   I cid 5582   × cxp 5687  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692   Fn wfn 6558  ontowfo 6561  cfv 6563  (class class class)co 7431  cmpo 7433  1oc1o 8498  2oc2o 8499   Er wer 8741  0cc0 11153  1c1 11154  cmin 11490  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549   splice csplice 14784  ⟨“cs2 14877   ~FG cefg 19739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-splice 14785  df-s2 14884  df-efg 19742
This theorem is referenced by:  efgred2  19786  frgpnabllem2  19907
  Copyright terms: Public domain W3C validator