MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqereq Structured version   Visualization version   GIF version

Theorem nqereq 10702
Description: The function [Q] acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nqereq ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵)))

Proof of Theorem nqereq
StepHypRef Expression
1 nqercl 10698 . . . . 5 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
213ad2ant1 1132 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ∈ Q)
3 nqercl 10698 . . . . 5 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
433ad2ant2 1133 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐵) ∈ Q)
5 enqer 10688 . . . . . 6 ~Q Er (N × N)
65a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N))
7 nqerrel 10699 . . . . . . 7 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
873ad2ant1 1132 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q ([Q]‘𝐴))
9 simp3 1137 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q 𝐵)
106, 8, 9ertr3d 8508 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q 𝐵)
11 nqerrel 10699 . . . . . 6 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
12113ad2ant2 1133 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q ([Q]‘𝐵))
136, 10, 12ertrd 8506 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q ([Q]‘𝐵))
14 enqeq 10701 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q ∧ ([Q]‘𝐴) ~Q ([Q]‘𝐵)) → ([Q]‘𝐴) = ([Q]‘𝐵))
152, 4, 13, 14syl3anc 1370 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) = ([Q]‘𝐵))
16153expia 1120 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 → ([Q]‘𝐴) = ([Q]‘𝐵)))
175a1i 11 . . . 4 ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ~Q Er (N × N))
187adantr 481 . . . . 5 ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐴))
19 simprr 770 . . . . 5 ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ([Q]‘𝐴) = ([Q]‘𝐵))
2018, 19breqtrd 5105 . . . 4 ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐵))
2111ad2antrl 725 . . . 4 ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐵 ~Q ([Q]‘𝐵))
2217, 20, 21ertr4d 8509 . . 3 ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q 𝐵)
2322expr 457 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐵) → 𝐴 ~Q 𝐵))
2416, 23impbid 211 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079   × cxp 5588  cfv 6432   Er wer 8487  Ncnpi 10611   ~Q ceq 10618  Qcnq 10619  [Q]cerq 10621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-oadd 8293  df-omul 8294  df-er 8490  df-ni 10639  df-mi 10641  df-lti 10642  df-enq 10678  df-nq 10679  df-erq 10680  df-1nq 10683
This theorem is referenced by:  adderpq  10723  mulerpq  10724  distrnq  10728  recmulnq  10731  ltexnq  10742
  Copyright terms: Public domain W3C validator