| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqereq | Structured version Visualization version GIF version | ||
| Description: The function [Q] acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqereq | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqercl 10844 | . . . . 5 ⊢ (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q) | |
| 2 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ∈ Q) |
| 3 | nqercl 10844 | . . . . 5 ⊢ (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q) | |
| 4 | 3 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐵) ∈ Q) |
| 5 | enqer 10834 | . . . . . 6 ⊢ ~Q Er (N × N) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) |
| 7 | nqerrel 10845 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q ([Q]‘𝐴)) |
| 9 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q 𝐵) | |
| 10 | 6, 8, 9 | ertr3d 8650 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q 𝐵) |
| 11 | nqerrel 10845 | . . . . . 6 ⊢ (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵)) | |
| 12 | 11 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q ([Q]‘𝐵)) |
| 13 | 6, 10, 12 | ertrd 8648 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q ([Q]‘𝐵)) |
| 14 | enqeq 10847 | . . . 4 ⊢ ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q ∧ ([Q]‘𝐴) ~Q ([Q]‘𝐵)) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
| 15 | 2, 4, 13, 14 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) = ([Q]‘𝐵)) |
| 16 | 15 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 → ([Q]‘𝐴) = ([Q]‘𝐵))) |
| 17 | 5 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ~Q Er (N × N)) |
| 18 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐴)) |
| 19 | simprr 772 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
| 20 | 18, 19 | breqtrd 5121 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐵)) |
| 21 | 11 | ad2antrl 728 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐵 ~Q ([Q]‘𝐵)) |
| 22 | 17, 20, 21 | ertr4d 8651 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q 𝐵) |
| 23 | 22 | expr 456 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐵) → 𝐴 ~Q 𝐵)) |
| 24 | 16, 23 | impbid 212 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 × cxp 5621 ‘cfv 6486 Er wer 8629 Ncnpi 10757 ~Q ceq 10764 Qcnq 10765 [Q]cerq 10767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ni 10785 df-mi 10787 df-lti 10788 df-enq 10824 df-nq 10825 df-erq 10826 df-1nq 10829 |
| This theorem is referenced by: adderpq 10869 mulerpq 10870 distrnq 10874 recmulnq 10877 ltexnq 10888 |
| Copyright terms: Public domain | W3C validator |