![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqereq | Structured version Visualization version GIF version |
Description: The function [Q] acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqereq | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqercl 11000 | . . . . 5 ⊢ (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q) | |
2 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ∈ Q) |
3 | nqercl 11000 | . . . . 5 ⊢ (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q) | |
4 | 3 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐵) ∈ Q) |
5 | enqer 10990 | . . . . . 6 ⊢ ~Q Er (N × N) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) |
7 | nqerrel 11001 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) | |
8 | 7 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q ([Q]‘𝐴)) |
9 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q 𝐵) | |
10 | 6, 8, 9 | ertr3d 8781 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q 𝐵) |
11 | nqerrel 11001 | . . . . . 6 ⊢ (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵)) | |
12 | 11 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q ([Q]‘𝐵)) |
13 | 6, 10, 12 | ertrd 8779 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q ([Q]‘𝐵)) |
14 | enqeq 11003 | . . . 4 ⊢ ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q ∧ ([Q]‘𝐴) ~Q ([Q]‘𝐵)) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
15 | 2, 4, 13, 14 | syl3anc 1371 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) = ([Q]‘𝐵)) |
16 | 15 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 → ([Q]‘𝐴) = ([Q]‘𝐵))) |
17 | 5 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ~Q Er (N × N)) |
18 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐴)) |
19 | simprr 772 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
20 | 18, 19 | breqtrd 5192 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐵)) |
21 | 11 | ad2antrl 727 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐵 ~Q ([Q]‘𝐵)) |
22 | 17, 20, 21 | ertr4d 8782 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q 𝐵) |
23 | 22 | expr 456 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐵) → 𝐴 ~Q 𝐵)) |
24 | 16, 23 | impbid 212 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 × cxp 5698 ‘cfv 6573 Er wer 8760 Ncnpi 10913 ~Q ceq 10920 Qcnq 10921 [Q]cerq 10923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ni 10941 df-mi 10943 df-lti 10944 df-enq 10980 df-nq 10981 df-erq 10982 df-1nq 10985 |
This theorem is referenced by: adderpq 11025 mulerpq 11026 distrnq 11030 recmulnq 11033 ltexnq 11044 |
Copyright terms: Public domain | W3C validator |