![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqereq | Structured version Visualization version GIF version |
Description: The function [Q] acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqereq | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqercl 10969 | . . . . 5 ⊢ (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q) | |
2 | 1 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ∈ Q) |
3 | nqercl 10969 | . . . . 5 ⊢ (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q) | |
4 | 3 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐵) ∈ Q) |
5 | enqer 10959 | . . . . . 6 ⊢ ~Q Er (N × N) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) |
7 | nqerrel 10970 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) | |
8 | 7 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q ([Q]‘𝐴)) |
9 | simp3 1137 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q 𝐵) | |
10 | 6, 8, 9 | ertr3d 8762 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q 𝐵) |
11 | nqerrel 10970 | . . . . . 6 ⊢ (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵)) | |
12 | 11 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q ([Q]‘𝐵)) |
13 | 6, 10, 12 | ertrd 8760 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q ([Q]‘𝐵)) |
14 | enqeq 10972 | . . . 4 ⊢ ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q ∧ ([Q]‘𝐴) ~Q ([Q]‘𝐵)) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
15 | 2, 4, 13, 14 | syl3anc 1370 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) = ([Q]‘𝐵)) |
16 | 15 | 3expia 1120 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 → ([Q]‘𝐴) = ([Q]‘𝐵))) |
17 | 5 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ~Q Er (N × N)) |
18 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐴)) |
19 | simprr 773 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
20 | 18, 19 | breqtrd 5174 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐵)) |
21 | 11 | ad2antrl 728 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐵 ~Q ([Q]‘𝐵)) |
22 | 17, 20, 21 | ertr4d 8763 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q 𝐵) |
23 | 22 | expr 456 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐵) → 𝐴 ~Q 𝐵)) |
24 | 16, 23 | impbid 212 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 × cxp 5687 ‘cfv 6563 Er wer 8741 Ncnpi 10882 ~Q ceq 10889 Qcnq 10890 [Q]cerq 10892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-ni 10910 df-mi 10912 df-lti 10913 df-enq 10949 df-nq 10950 df-erq 10951 df-1nq 10954 |
This theorem is referenced by: adderpq 10994 mulerpq 10995 distrnq 10999 recmulnq 11002 ltexnq 11013 |
Copyright terms: Public domain | W3C validator |