Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nqereq | Structured version Visualization version GIF version |
Description: The function [Q] acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqereq | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqercl 10698 | . . . . 5 ⊢ (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q) | |
2 | 1 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ∈ Q) |
3 | nqercl 10698 | . . . . 5 ⊢ (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q) | |
4 | 3 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐵) ∈ Q) |
5 | enqer 10688 | . . . . . 6 ⊢ ~Q Er (N × N) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ~Q Er (N × N)) |
7 | nqerrel 10699 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) | |
8 | 7 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q ([Q]‘𝐴)) |
9 | simp3 1137 | . . . . . 6 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐴 ~Q 𝐵) | |
10 | 6, 8, 9 | ertr3d 8508 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q 𝐵) |
11 | nqerrel 10699 | . . . . . 6 ⊢ (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵)) | |
12 | 11 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → 𝐵 ~Q ([Q]‘𝐵)) |
13 | 6, 10, 12 | ertrd 8506 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) ~Q ([Q]‘𝐵)) |
14 | enqeq 10701 | . . . 4 ⊢ ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q ∧ ([Q]‘𝐴) ~Q ([Q]‘𝐵)) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
15 | 2, 4, 13, 14 | syl3anc 1370 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐴 ~Q 𝐵) → ([Q]‘𝐴) = ([Q]‘𝐵)) |
16 | 15 | 3expia 1120 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 → ([Q]‘𝐴) = ([Q]‘𝐵))) |
17 | 5 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ~Q Er (N × N)) |
18 | 7 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐴)) |
19 | simprr 770 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → ([Q]‘𝐴) = ([Q]‘𝐵)) | |
20 | 18, 19 | breqtrd 5105 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q ([Q]‘𝐵)) |
21 | 11 | ad2antrl 725 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐵 ~Q ([Q]‘𝐵)) |
22 | 17, 20, 21 | ertr4d 8509 | . . 3 ⊢ ((𝐴 ∈ (N × N) ∧ (𝐵 ∈ (N × N) ∧ ([Q]‘𝐴) = ([Q]‘𝐵))) → 𝐴 ~Q 𝐵) |
23 | 22 | expr 457 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) = ([Q]‘𝐵) → 𝐴 ~Q 𝐵)) |
24 | 16, 23 | impbid 211 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 × cxp 5588 ‘cfv 6432 Er wer 8487 Ncnpi 10611 ~Q ceq 10618 Qcnq 10619 [Q]cerq 10621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-oadd 8293 df-omul 8294 df-er 8490 df-ni 10639 df-mi 10641 df-lti 10642 df-enq 10678 df-nq 10679 df-erq 10680 df-1nq 10683 |
This theorem is referenced by: adderpq 10723 mulerpq 10724 distrnq 10728 recmulnq 10731 ltexnq 10742 |
Copyright terms: Public domain | W3C validator |