MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrres Structured version   Visualization version   GIF version

Theorem estrres 18156
Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
estrres.g (𝜑𝐺𝑊)
estrres.u (𝜑𝐴𝐵)
Assertion
Ref Expression
estrres (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem estrres
StepHypRef Expression
1 ovex 7443 . . 3 (𝐶s 𝐴) ∈ V
2 estrres.g . . 3 (𝜑𝐺𝑊)
3 setsval 17191 . . 3 (((𝐶s 𝐴) ∈ V ∧ 𝐺𝑊) → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
41, 2, 3sylancr 587 . 2 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
5 eqid 2736 . . . . 5 (𝐶s 𝐴) = (𝐶s 𝐴)
6 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2736 . . . . 5 (Base‘ndx) = (Base‘ndx)
8 estrres.c . . . . . 6 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
9 tpex 7745 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
108, 9eqeltrdi 2843 . . . . 5 (𝜑𝐶 ∈ V)
11 fvex 6894 . . . . . . . . 9 (Base‘ndx) ∈ V
12 fvex 6894 . . . . . . . . 9 (Hom ‘ndx) ∈ V
13 fvex 6894 . . . . . . . . 9 (comp‘ndx) ∈ V
1411, 12, 133pm3.2i 1340 . . . . . . . 8 ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V)
1514a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V))
16 estrres.b . . . . . . 7 (𝜑𝐵𝑉)
17 estrres.h . . . . . . 7 (𝜑𝐻𝑋)
18 estrres.x . . . . . . 7 (𝜑·𝑌)
19 slotsbhcdif 17434 . . . . . . . 8 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
2019a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)))
21 funtpg 6596 . . . . . . 7 ((((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V) ∧ (𝐵𝑉𝐻𝑋·𝑌) ∧ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2215, 16, 17, 18, 20, 21syl131anc 1385 . . . . . 6 (𝜑 → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
238funeqd 6563 . . . . . 6 (𝜑 → (Fun 𝐶 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩}))
2422, 23mpbird 257 . . . . 5 (𝜑 → Fun 𝐶)
258, 16, 17, 18estrreslem2 18155 . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
26 estrres.u . . . . . 6 (𝜑𝐴𝐵)
278, 16estrreslem1 18154 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
2826, 27sseqtrd 4000 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝐶))
295, 6, 7, 10, 24, 25, 28ressval3d 17272 . . . 4 (𝜑 → (𝐶s 𝐴) = (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩))
3029reseq1d 5970 . . 3 (𝜑 → ((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) = ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})))
3130uneq1d 4147 . 2 (𝜑 → (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
3216, 26ssexd 5299 . . . . . . 7 (𝜑𝐴 ∈ V)
33 setsval 17191 . . . . . . 7 ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3410, 32, 33syl2anc 584 . . . . . 6 (𝜑 → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3534reseq1d 5970 . . . . 5 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})))
36 fvexd 6896 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ∈ V)
37 fvexd 6896 . . . . . . . . 9 (𝜑 → (comp‘ndx) ∈ V)
3817elexd 3488 . . . . . . . . 9 (𝜑𝐻 ∈ V)
3918elexd 3488 . . . . . . . . 9 (𝜑· ∈ V)
40 simp1 1136 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (Hom ‘ndx))
4140necomd 2988 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (Base‘ndx))
4219, 41mp1i 13 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ≠ (Base‘ndx))
43 simp2 1137 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (comp‘ndx))
4443necomd 2988 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Base‘ndx))
4519, 44mp1i 13 . . . . . . . . 9 (𝜑 → (comp‘ndx) ≠ (Base‘ndx))
468, 36, 37, 38, 39, 42, 45tpres 7198 . . . . . . . 8 (𝜑 → (𝐶 ↾ (V ∖ {(Base‘ndx)})) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
4746uneq1d 4147 . . . . . . 7 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩}))
48 df-tp 4611 . . . . . . 7 {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩})
4947, 48eqtr4di 2789 . . . . . 6 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
50 fvexd 6896 . . . . . 6 (𝜑 → (Base‘ndx) ∈ V)
51 simp3 1138 . . . . . . . 8 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx))
5251necomd 2988 . . . . . . 7 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx))
5319, 52mp1i 13 . . . . . 6 (𝜑 → (comp‘ndx) ≠ (Hom ‘ndx))
5419, 40mp1i 13 . . . . . 6 (𝜑 → (Base‘ndx) ≠ (Hom ‘ndx))
5549, 37, 50, 39, 32, 53, 54tpres 7198 . . . . 5 (𝜑 → (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5635, 55eqtrd 2771 . . . 4 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5756uneq1d 4147 . . 3 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
58 df-tp 4611 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩})
59 tprot 4730 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6058, 59eqtr3i 2761 . . 3 ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6157, 60eqtrdi 2787 . 2 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
624, 31, 613eqtrd 2775 1 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  cun 3929  wss 3931  {csn 4606  {cpr 4608  {ctp 4610  cop 4612  cres 5661  Fun wfun 6530  cfv 6536  (class class class)co 7410   sSet csts 17187  ndxcnx 17217  Basecbs 17233  s cress 17256  Hom chom 17287  compcco 17288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-hom 17300  df-cco 17301
This theorem is referenced by:  dfrngc2  20593  dfringc2  20622  rngcresringcat  20634
  Copyright terms: Public domain W3C validator