MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrres Structured version   Visualization version   GIF version

Theorem estrres 18195
Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
estrres.g (𝜑𝐺𝑊)
estrres.u (𝜑𝐴𝐵)
Assertion
Ref Expression
estrres (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem estrres
StepHypRef Expression
1 ovex 7464 . . 3 (𝐶s 𝐴) ∈ V
2 estrres.g . . 3 (𝜑𝐺𝑊)
3 setsval 17201 . . 3 (((𝐶s 𝐴) ∈ V ∧ 𝐺𝑊) → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
41, 2, 3sylancr 587 . 2 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
5 eqid 2735 . . . . 5 (𝐶s 𝐴) = (𝐶s 𝐴)
6 eqid 2735 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2735 . . . . 5 (Base‘ndx) = (Base‘ndx)
8 estrres.c . . . . . 6 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
9 tpex 7765 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
108, 9eqeltrdi 2847 . . . . 5 (𝜑𝐶 ∈ V)
11 fvex 6920 . . . . . . . . 9 (Base‘ndx) ∈ V
12 fvex 6920 . . . . . . . . 9 (Hom ‘ndx) ∈ V
13 fvex 6920 . . . . . . . . 9 (comp‘ndx) ∈ V
1411, 12, 133pm3.2i 1338 . . . . . . . 8 ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V)
1514a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V))
16 estrres.b . . . . . . 7 (𝜑𝐵𝑉)
17 estrres.h . . . . . . 7 (𝜑𝐻𝑋)
18 estrres.x . . . . . . 7 (𝜑·𝑌)
19 slotsbhcdif 17461 . . . . . . . 8 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
2019a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)))
21 funtpg 6623 . . . . . . 7 ((((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V) ∧ (𝐵𝑉𝐻𝑋·𝑌) ∧ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2215, 16, 17, 18, 20, 21syl131anc 1382 . . . . . 6 (𝜑 → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
238funeqd 6590 . . . . . 6 (𝜑 → (Fun 𝐶 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩}))
2422, 23mpbird 257 . . . . 5 (𝜑 → Fun 𝐶)
258, 16, 17, 18estrreslem2 18194 . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
26 estrres.u . . . . . 6 (𝜑𝐴𝐵)
278, 16estrreslem1 18192 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
2826, 27sseqtrd 4036 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝐶))
295, 6, 7, 10, 24, 25, 28ressval3d 17292 . . . 4 (𝜑 → (𝐶s 𝐴) = (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩))
3029reseq1d 5999 . . 3 (𝜑 → ((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) = ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})))
3130uneq1d 4177 . 2 (𝜑 → (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
3216, 26ssexd 5330 . . . . . . 7 (𝜑𝐴 ∈ V)
33 setsval 17201 . . . . . . 7 ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3410, 32, 33syl2anc 584 . . . . . 6 (𝜑 → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3534reseq1d 5999 . . . . 5 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})))
36 fvexd 6922 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ∈ V)
37 fvexd 6922 . . . . . . . . 9 (𝜑 → (comp‘ndx) ∈ V)
3817elexd 3502 . . . . . . . . 9 (𝜑𝐻 ∈ V)
3918elexd 3502 . . . . . . . . 9 (𝜑· ∈ V)
40 simp1 1135 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (Hom ‘ndx))
4140necomd 2994 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (Base‘ndx))
4219, 41mp1i 13 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ≠ (Base‘ndx))
43 simp2 1136 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (comp‘ndx))
4443necomd 2994 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Base‘ndx))
4519, 44mp1i 13 . . . . . . . . 9 (𝜑 → (comp‘ndx) ≠ (Base‘ndx))
468, 36, 37, 38, 39, 42, 45tpres 7221 . . . . . . . 8 (𝜑 → (𝐶 ↾ (V ∖ {(Base‘ndx)})) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
4746uneq1d 4177 . . . . . . 7 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩}))
48 df-tp 4636 . . . . . . 7 {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩})
4947, 48eqtr4di 2793 . . . . . 6 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
50 fvexd 6922 . . . . . 6 (𝜑 → (Base‘ndx) ∈ V)
51 simp3 1137 . . . . . . . 8 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx))
5251necomd 2994 . . . . . . 7 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx))
5319, 52mp1i 13 . . . . . 6 (𝜑 → (comp‘ndx) ≠ (Hom ‘ndx))
5419, 40mp1i 13 . . . . . 6 (𝜑 → (Base‘ndx) ≠ (Hom ‘ndx))
5549, 37, 50, 39, 32, 53, 54tpres 7221 . . . . 5 (𝜑 → (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5635, 55eqtrd 2775 . . . 4 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5756uneq1d 4177 . . 3 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
58 df-tp 4636 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩})
59 tprot 4754 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6058, 59eqtr3i 2765 . . 3 ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6157, 60eqtrdi 2791 . 2 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
624, 31, 613eqtrd 2779 1 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cdif 3960  cun 3961  wss 3963  {csn 4631  {cpr 4633  {ctp 4635  cop 4637  cres 5691  Fun wfun 6557  cfv 6563  (class class class)co 7431   sSet csts 17197  ndxcnx 17227  Basecbs 17245  s cress 17274  Hom chom 17309  compcco 17310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-hom 17322  df-cco 17323
This theorem is referenced by:  dfrngc2  20645  dfringc2  20674  rngcresringcat  20686
  Copyright terms: Public domain W3C validator