MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrres Structured version   Visualization version   GIF version

Theorem estrres 17381
Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
estrres.g (𝜑𝐺𝑊)
estrres.u (𝜑𝐴𝐵)
Assertion
Ref Expression
estrres (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem estrres
StepHypRef Expression
1 ovex 7168 . . 3 (𝐶s 𝐴) ∈ V
2 estrres.g . . 3 (𝜑𝐺𝑊)
3 setsval 16505 . . 3 (((𝐶s 𝐴) ∈ V ∧ 𝐺𝑊) → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
41, 2, 3sylancr 590 . 2 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
5 eqid 2798 . . . . 5 (𝐶s 𝐴) = (𝐶s 𝐴)
6 eqid 2798 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2798 . . . . 5 (Base‘ndx) = (Base‘ndx)
8 estrres.c . . . . . 6 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
9 tpex 7450 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
108, 9eqeltrdi 2898 . . . . 5 (𝜑𝐶 ∈ V)
11 fvex 6658 . . . . . . . . 9 (Base‘ndx) ∈ V
12 fvex 6658 . . . . . . . . 9 (Hom ‘ndx) ∈ V
13 fvex 6658 . . . . . . . . 9 (comp‘ndx) ∈ V
1411, 12, 133pm3.2i 1336 . . . . . . . 8 ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V)
1514a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V))
16 estrres.b . . . . . . 7 (𝜑𝐵𝑉)
17 estrres.h . . . . . . 7 (𝜑𝐻𝑋)
18 estrres.x . . . . . . 7 (𝜑·𝑌)
19 slotsbhcdif 16685 . . . . . . . 8 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
2019a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)))
21 funtpg 6379 . . . . . . 7 ((((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V) ∧ (𝐵𝑉𝐻𝑋·𝑌) ∧ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2215, 16, 17, 18, 20, 21syl131anc 1380 . . . . . 6 (𝜑 → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
238funeqd 6346 . . . . . 6 (𝜑 → (Fun 𝐶 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩}))
2422, 23mpbird 260 . . . . 5 (𝜑 → Fun 𝐶)
258, 16, 17, 18estrreslem2 17380 . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
26 estrres.u . . . . . 6 (𝜑𝐴𝐵)
278, 16estrreslem1 17379 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
2826, 27sseqtrd 3955 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝐶))
295, 6, 7, 10, 24, 25, 28ressval3d 16553 . . . 4 (𝜑 → (𝐶s 𝐴) = (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩))
3029reseq1d 5817 . . 3 (𝜑 → ((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) = ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})))
3130uneq1d 4089 . 2 (𝜑 → (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
3216, 26ssexd 5192 . . . . . . 7 (𝜑𝐴 ∈ V)
33 setsval 16505 . . . . . . 7 ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3410, 32, 33syl2anc 587 . . . . . 6 (𝜑 → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3534reseq1d 5817 . . . . 5 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})))
36 fvexd 6660 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ∈ V)
37 fvexd 6660 . . . . . . . . 9 (𝜑 → (comp‘ndx) ∈ V)
3817elexd 3461 . . . . . . . . 9 (𝜑𝐻 ∈ V)
3918elexd 3461 . . . . . . . . 9 (𝜑· ∈ V)
40 simp1 1133 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (Hom ‘ndx))
4140necomd 3042 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (Base‘ndx))
4219, 41mp1i 13 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ≠ (Base‘ndx))
43 simp2 1134 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (comp‘ndx))
4443necomd 3042 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Base‘ndx))
4519, 44mp1i 13 . . . . . . . . 9 (𝜑 → (comp‘ndx) ≠ (Base‘ndx))
468, 36, 37, 38, 39, 42, 45tpres 6940 . . . . . . . 8 (𝜑 → (𝐶 ↾ (V ∖ {(Base‘ndx)})) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
4746uneq1d 4089 . . . . . . 7 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩}))
48 df-tp 4530 . . . . . . 7 {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩})
4947, 48eqtr4di 2851 . . . . . 6 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
50 fvexd 6660 . . . . . 6 (𝜑 → (Base‘ndx) ∈ V)
51 simp3 1135 . . . . . . . 8 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx))
5251necomd 3042 . . . . . . 7 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx))
5319, 52mp1i 13 . . . . . 6 (𝜑 → (comp‘ndx) ≠ (Hom ‘ndx))
5419, 40mp1i 13 . . . . . 6 (𝜑 → (Base‘ndx) ≠ (Hom ‘ndx))
5549, 37, 50, 39, 32, 53, 54tpres 6940 . . . . 5 (𝜑 → (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5635, 55eqtrd 2833 . . . 4 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5756uneq1d 4089 . . 3 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
58 df-tp 4530 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩})
59 tprot 4645 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6058, 59eqtr3i 2823 . . 3 ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6157, 60eqtrdi 2849 . 2 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
624, 31, 613eqtrd 2837 1 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  cun 3879  wss 3881  {csn 4525  {cpr 4527  {ctp 4529  cop 4531  cres 5521  Fun wfun 6318  cfv 6324  (class class class)co 7135  ndxcnx 16472   sSet csts 16473  Basecbs 16475  s cress 16476  Hom chom 16568  compcco 16569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-hom 16581  df-cco 16582
This theorem is referenced by:  dfrngc2  44596  dfringc2  44642  rngcresringcat  44654
  Copyright terms: Public domain W3C validator