Proof of Theorem estrres
Step | Hyp | Ref
| Expression |
1 | | ovex 7301 |
. . 3
⊢ (𝐶 ↾s 𝐴) ∈ V |
2 | | estrres.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
3 | | setsval 16849 |
. . 3
⊢ (((𝐶 ↾s 𝐴) ∈ V ∧ 𝐺 ∈ 𝑊) → ((𝐶 ↾s 𝐴) sSet 〈(Hom ‘ndx), 𝐺〉) = (((𝐶 ↾s 𝐴) ↾ (V ∖ {(Hom ‘ndx)}))
∪ {〈(Hom ‘ndx), 𝐺〉})) |
4 | 1, 2, 3 | sylancr 586 |
. 2
⊢ (𝜑 → ((𝐶 ↾s 𝐴) sSet 〈(Hom ‘ndx), 𝐺〉) = (((𝐶 ↾s 𝐴) ↾ (V ∖ {(Hom ‘ndx)}))
∪ {〈(Hom ‘ndx), 𝐺〉})) |
5 | | eqid 2739 |
. . . . 5
⊢ (𝐶 ↾s 𝐴) = (𝐶 ↾s 𝐴) |
6 | | eqid 2739 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
7 | | eqid 2739 |
. . . . 5
⊢
(Base‘ndx) = (Base‘ndx) |
8 | | estrres.c |
. . . . . 6
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx),
𝐻〉,
〈(comp‘ndx), ·
〉}) |
9 | | tpex 7588 |
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉} ∈ V |
10 | 8, 9 | eqeltrdi 2848 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ V) |
11 | | fvex 6781 |
. . . . . . . . 9
⊢
(Base‘ndx) ∈ V |
12 | | fvex 6781 |
. . . . . . . . 9
⊢ (Hom
‘ndx) ∈ V |
13 | | fvex 6781 |
. . . . . . . . 9
⊢
(comp‘ndx) ∈ V |
14 | 11, 12, 13 | 3pm3.2i 1337 |
. . . . . . . 8
⊢
((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧
(comp‘ndx) ∈ V) |
15 | 14 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((Base‘ndx) ∈ V
∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈
V)) |
16 | | estrres.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
17 | | estrres.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ 𝑋) |
18 | | estrres.x |
. . . . . . 7
⊢ (𝜑 → · ∈ 𝑌) |
19 | | slotsbhcdif 17106 |
. . . . . . . 8
⊢
((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) |
20 | 19 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((Base‘ndx) ≠
(Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom
‘ndx) ≠ (comp‘ndx))) |
21 | | funtpg 6485 |
. . . . . . 7
⊢
((((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧
(comp‘ndx) ∈ V) ∧ (𝐵 ∈ 𝑉 ∧ 𝐻 ∈ 𝑋 ∧ · ∈ 𝑌) ∧ ((Base‘ndx) ≠
(Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom
‘ndx) ≠ (comp‘ndx))) → Fun {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx),
𝐻〉,
〈(comp‘ndx), ·
〉}) |
22 | 15, 16, 17, 18, 20, 21 | syl131anc 1381 |
. . . . . 6
⊢ (𝜑 → Fun
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉}) |
23 | 8 | funeqd 6452 |
. . . . . 6
⊢ (𝜑 → (Fun 𝐶 ↔ Fun {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx),
𝐻〉,
〈(comp‘ndx), ·
〉})) |
24 | 22, 23 | mpbird 256 |
. . . . 5
⊢ (𝜑 → Fun 𝐶) |
25 | 8, 16, 17, 18 | estrreslem2 17836 |
. . . . 5
⊢ (𝜑 → (Base‘ndx) ∈
dom 𝐶) |
26 | | estrres.u |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
27 | 8, 16 | estrreslem1 17834 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
28 | 26, 27 | sseqtrd 3965 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐶)) |
29 | 5, 6, 7, 10, 24, 25, 28 | ressval3d 16937 |
. . . 4
⊢ (𝜑 → (𝐶 ↾s 𝐴) = (𝐶 sSet 〈(Base‘ndx), 𝐴〉)) |
30 | 29 | reseq1d 5887 |
. . 3
⊢ (𝜑 → ((𝐶 ↾s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) =
((𝐶 sSet
〈(Base‘ndx), 𝐴〉) ↾ (V ∖ {(Hom
‘ndx)}))) |
31 | 30 | uneq1d 4100 |
. 2
⊢ (𝜑 → (((𝐶 ↾s 𝐴) ↾ (V ∖ {(Hom ‘ndx)}))
∪ {〈(Hom ‘ndx), 𝐺〉}) = (((𝐶 sSet 〈(Base‘ndx), 𝐴〉) ↾ (V ∖ {(Hom
‘ndx)})) ∪ {〈(Hom ‘ndx), 𝐺〉})) |
32 | 16, 26 | ssexd 5251 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ V) |
33 | | setsval 16849 |
. . . . . . 7
⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 sSet 〈(Base‘ndx),
𝐴〉) = ((𝐶 ↾ (V ∖
{(Base‘ndx)})) ∪ {〈(Base‘ndx), 𝐴〉})) |
34 | 10, 32, 33 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐶 sSet 〈(Base‘ndx), 𝐴〉) = ((𝐶 ↾ (V ∖ {(Base‘ndx)}))
∪ {〈(Base‘ndx), 𝐴〉})) |
35 | 34 | reseq1d 5887 |
. . . . 5
⊢ (𝜑 → ((𝐶 sSet 〈(Base‘ndx), 𝐴〉) ↾ (V ∖ {(Hom
‘ndx)})) = (((𝐶
↾ (V ∖ {(Base‘ndx)})) ∪ {〈(Base‘ndx), 𝐴〉}) ↾ (V ∖
{(Hom ‘ndx)}))) |
36 | | fvexd 6783 |
. . . . . . . . 9
⊢ (𝜑 → (Hom ‘ndx) ∈
V) |
37 | | fvexd 6783 |
. . . . . . . . 9
⊢ (𝜑 → (comp‘ndx) ∈
V) |
38 | 17 | elexd 3450 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ V) |
39 | 18 | elexd 3450 |
. . . . . . . . 9
⊢ (𝜑 → · ∈
V) |
40 | | simp1 1134 |
. . . . . . . . . . 11
⊢
(((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) →
(Base‘ndx) ≠ (Hom ‘ndx)) |
41 | 40 | necomd 3000 |
. . . . . . . . . 10
⊢
(((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom
‘ndx) ≠ (Base‘ndx)) |
42 | 19, 41 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → (Hom ‘ndx) ≠
(Base‘ndx)) |
43 | | simp2 1135 |
. . . . . . . . . . 11
⊢
(((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) →
(Base‘ndx) ≠ (comp‘ndx)) |
44 | 43 | necomd 3000 |
. . . . . . . . . 10
⊢
(((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) →
(comp‘ndx) ≠ (Base‘ndx)) |
45 | 19, 44 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → (comp‘ndx) ≠
(Base‘ndx)) |
46 | 8, 36, 37, 38, 39, 42, 45 | tpres 7070 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ↾ (V ∖ {(Base‘ndx)})) =
{〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ·
〉}) |
47 | 46 | uneq1d 4100 |
. . . . . . 7
⊢ (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)}))
∪ {〈(Base‘ndx), 𝐴〉}) = ({〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉} ∪ {〈(Base‘ndx), 𝐴〉})) |
48 | | df-tp 4571 |
. . . . . . 7
⊢
{〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ·
〉, 〈(Base‘ndx), 𝐴〉} = ({〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉} ∪ {〈(Base‘ndx), 𝐴〉}) |
49 | 47, 48 | eqtr4di 2797 |
. . . . . 6
⊢ (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)}))
∪ {〈(Base‘ndx), 𝐴〉}) = {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉, 〈(Base‘ndx), 𝐴〉}) |
50 | | fvexd 6783 |
. . . . . 6
⊢ (𝜑 → (Base‘ndx) ∈
V) |
51 | | simp3 1136 |
. . . . . . . 8
⊢
(((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom
‘ndx) ≠ (comp‘ndx)) |
52 | 51 | necomd 3000 |
. . . . . . 7
⊢
(((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠
(comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) →
(comp‘ndx) ≠ (Hom ‘ndx)) |
53 | 19, 52 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (comp‘ndx) ≠ (Hom
‘ndx)) |
54 | 19, 40 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (Base‘ndx) ≠ (Hom
‘ndx)) |
55 | 49, 37, 50, 39, 32, 53, 54 | tpres 7070 |
. . . . 5
⊢ (𝜑 → (((𝐶 ↾ (V ∖ {(Base‘ndx)}))
∪ {〈(Base‘ndx), 𝐴〉}) ↾ (V ∖ {(Hom
‘ndx)})) = {〈(comp‘ndx), · 〉,
〈(Base‘ndx), 𝐴〉}) |
56 | 35, 55 | eqtrd 2779 |
. . . 4
⊢ (𝜑 → ((𝐶 sSet 〈(Base‘ndx), 𝐴〉) ↾ (V ∖ {(Hom
‘ndx)})) = {〈(comp‘ndx), · 〉,
〈(Base‘ndx), 𝐴〉}) |
57 | 56 | uneq1d 4100 |
. . 3
⊢ (𝜑 → (((𝐶 sSet 〈(Base‘ndx), 𝐴〉) ↾ (V ∖ {(Hom
‘ndx)})) ∪ {〈(Hom ‘ndx), 𝐺〉}) = ({〈(comp‘ndx), ·
〉, 〈(Base‘ndx), 𝐴〉} ∪ {〈(Hom ‘ndx), 𝐺〉})) |
58 | | df-tp 4571 |
. . . 4
⊢
{〈(comp‘ndx), · 〉,
〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉} =
({〈(comp‘ndx), · 〉,
〈(Base‘ndx), 𝐴〉} ∪ {〈(Hom ‘ndx), 𝐺〉}) |
59 | | tprot 4690 |
. . . 4
⊢
{〈(comp‘ndx), · 〉,
〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉} =
{〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉, 〈(comp‘ndx),
·
〉} |
60 | 58, 59 | eqtr3i 2769 |
. . 3
⊢
({〈(comp‘ndx), · 〉,
〈(Base‘ndx), 𝐴〉} ∪ {〈(Hom ‘ndx), 𝐺〉}) =
{〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉, 〈(comp‘ndx),
·
〉} |
61 | 57, 60 | eqtrdi 2795 |
. 2
⊢ (𝜑 → (((𝐶 sSet 〈(Base‘ndx), 𝐴〉) ↾ (V ∖ {(Hom
‘ndx)})) ∪ {〈(Hom ‘ndx), 𝐺〉}) = {〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx),
𝐺〉,
〈(comp‘ndx), ·
〉}) |
62 | 4, 31, 61 | 3eqtrd 2783 |
1
⊢ (𝜑 → ((𝐶 ↾s 𝐴) sSet 〈(Hom ‘ndx), 𝐺〉) =
{〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉, 〈(comp‘ndx),
·
〉}) |