MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrres Structured version   Visualization version   GIF version

Theorem estrres 18095
Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
estrres.g (𝜑𝐺𝑊)
estrres.u (𝜑𝐴𝐵)
Assertion
Ref Expression
estrres (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem estrres
StepHypRef Expression
1 ovex 7444 . . 3 (𝐶s 𝐴) ∈ V
2 estrres.g . . 3 (𝜑𝐺𝑊)
3 setsval 17104 . . 3 (((𝐶s 𝐴) ∈ V ∧ 𝐺𝑊) → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
41, 2, 3sylancr 585 . 2 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
5 eqid 2730 . . . . 5 (𝐶s 𝐴) = (𝐶s 𝐴)
6 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2730 . . . . 5 (Base‘ndx) = (Base‘ndx)
8 estrres.c . . . . . 6 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
9 tpex 7736 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
108, 9eqeltrdi 2839 . . . . 5 (𝜑𝐶 ∈ V)
11 fvex 6903 . . . . . . . . 9 (Base‘ndx) ∈ V
12 fvex 6903 . . . . . . . . 9 (Hom ‘ndx) ∈ V
13 fvex 6903 . . . . . . . . 9 (comp‘ndx) ∈ V
1411, 12, 133pm3.2i 1337 . . . . . . . 8 ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V)
1514a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V))
16 estrres.b . . . . . . 7 (𝜑𝐵𝑉)
17 estrres.h . . . . . . 7 (𝜑𝐻𝑋)
18 estrres.x . . . . . . 7 (𝜑·𝑌)
19 slotsbhcdif 17364 . . . . . . . 8 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
2019a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)))
21 funtpg 6602 . . . . . . 7 ((((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V) ∧ (𝐵𝑉𝐻𝑋·𝑌) ∧ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2215, 16, 17, 18, 20, 21syl131anc 1381 . . . . . 6 (𝜑 → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
238funeqd 6569 . . . . . 6 (𝜑 → (Fun 𝐶 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩}))
2422, 23mpbird 256 . . . . 5 (𝜑 → Fun 𝐶)
258, 16, 17, 18estrreslem2 18094 . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
26 estrres.u . . . . . 6 (𝜑𝐴𝐵)
278, 16estrreslem1 18092 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
2826, 27sseqtrd 4021 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝐶))
295, 6, 7, 10, 24, 25, 28ressval3d 17195 . . . 4 (𝜑 → (𝐶s 𝐴) = (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩))
3029reseq1d 5979 . . 3 (𝜑 → ((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) = ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})))
3130uneq1d 4161 . 2 (𝜑 → (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
3216, 26ssexd 5323 . . . . . . 7 (𝜑𝐴 ∈ V)
33 setsval 17104 . . . . . . 7 ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3410, 32, 33syl2anc 582 . . . . . 6 (𝜑 → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3534reseq1d 5979 . . . . 5 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})))
36 fvexd 6905 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ∈ V)
37 fvexd 6905 . . . . . . . . 9 (𝜑 → (comp‘ndx) ∈ V)
3817elexd 3493 . . . . . . . . 9 (𝜑𝐻 ∈ V)
3918elexd 3493 . . . . . . . . 9 (𝜑· ∈ V)
40 simp1 1134 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (Hom ‘ndx))
4140necomd 2994 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (Base‘ndx))
4219, 41mp1i 13 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ≠ (Base‘ndx))
43 simp2 1135 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (comp‘ndx))
4443necomd 2994 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Base‘ndx))
4519, 44mp1i 13 . . . . . . . . 9 (𝜑 → (comp‘ndx) ≠ (Base‘ndx))
468, 36, 37, 38, 39, 42, 45tpres 7203 . . . . . . . 8 (𝜑 → (𝐶 ↾ (V ∖ {(Base‘ndx)})) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
4746uneq1d 4161 . . . . . . 7 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩}))
48 df-tp 4632 . . . . . . 7 {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩})
4947, 48eqtr4di 2788 . . . . . 6 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
50 fvexd 6905 . . . . . 6 (𝜑 → (Base‘ndx) ∈ V)
51 simp3 1136 . . . . . . . 8 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx))
5251necomd 2994 . . . . . . 7 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx))
5319, 52mp1i 13 . . . . . 6 (𝜑 → (comp‘ndx) ≠ (Hom ‘ndx))
5419, 40mp1i 13 . . . . . 6 (𝜑 → (Base‘ndx) ≠ (Hom ‘ndx))
5549, 37, 50, 39, 32, 53, 54tpres 7203 . . . . 5 (𝜑 → (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5635, 55eqtrd 2770 . . . 4 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5756uneq1d 4161 . . 3 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
58 df-tp 4632 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩})
59 tprot 4752 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6058, 59eqtr3i 2760 . . 3 ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6157, 60eqtrdi 2786 . 2 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
624, 31, 613eqtrd 2774 1 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2104  wne 2938  Vcvv 3472  cdif 3944  cun 3945  wss 3947  {csn 4627  {cpr 4629  {ctp 4631  cop 4633  cres 5677  Fun wfun 6536  cfv 6542  (class class class)co 7411   sSet csts 17100  ndxcnx 17130  Basecbs 17148  s cress 17177  Hom chom 17212  compcco 17213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-hom 17225  df-cco 17226
This theorem is referenced by:  dfrngc2  46958  dfringc2  47004  rngcresringcat  47016
  Copyright terms: Public domain W3C validator