MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrres Structured version   Visualization version   GIF version

Theorem estrres 17905
Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
estrres.g (𝜑𝐺𝑊)
estrres.u (𝜑𝐴𝐵)
Assertion
Ref Expression
estrres (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem estrres
StepHypRef Expression
1 ovex 7340 . . 3 (𝐶s 𝐴) ∈ V
2 estrres.g . . 3 (𝜑𝐺𝑊)
3 setsval 16917 . . 3 (((𝐶s 𝐴) ∈ V ∧ 𝐺𝑊) → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
41, 2, 3sylancr 588 . 2 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
5 eqid 2736 . . . . 5 (𝐶s 𝐴) = (𝐶s 𝐴)
6 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
7 eqid 2736 . . . . 5 (Base‘ndx) = (Base‘ndx)
8 estrres.c . . . . . 6 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
9 tpex 7629 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
108, 9eqeltrdi 2845 . . . . 5 (𝜑𝐶 ∈ V)
11 fvex 6817 . . . . . . . . 9 (Base‘ndx) ∈ V
12 fvex 6817 . . . . . . . . 9 (Hom ‘ndx) ∈ V
13 fvex 6817 . . . . . . . . 9 (comp‘ndx) ∈ V
1411, 12, 133pm3.2i 1339 . . . . . . . 8 ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V)
1514a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V))
16 estrres.b . . . . . . 7 (𝜑𝐵𝑉)
17 estrres.h . . . . . . 7 (𝜑𝐻𝑋)
18 estrres.x . . . . . . 7 (𝜑·𝑌)
19 slotsbhcdif 17174 . . . . . . . 8 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
2019a1i 11 . . . . . . 7 (𝜑 → ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)))
21 funtpg 6518 . . . . . . 7 ((((Base‘ndx) ∈ V ∧ (Hom ‘ndx) ∈ V ∧ (comp‘ndx) ∈ V) ∧ (𝐵𝑉𝐻𝑋·𝑌) ∧ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2215, 16, 17, 18, 20, 21syl131anc 1383 . . . . . 6 (𝜑 → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
238funeqd 6485 . . . . . 6 (𝜑 → (Fun 𝐶 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩}))
2422, 23mpbird 257 . . . . 5 (𝜑 → Fun 𝐶)
258, 16, 17, 18estrreslem2 17904 . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
26 estrres.u . . . . . 6 (𝜑𝐴𝐵)
278, 16estrreslem1 17902 . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
2826, 27sseqtrd 3966 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝐶))
295, 6, 7, 10, 24, 25, 28ressval3d 17005 . . . 4 (𝜑 → (𝐶s 𝐴) = (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩))
3029reseq1d 5902 . . 3 (𝜑 → ((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) = ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})))
3130uneq1d 4102 . 2 (𝜑 → (((𝐶s 𝐴) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
3216, 26ssexd 5257 . . . . . . 7 (𝜑𝐴 ∈ V)
33 setsval 16917 . . . . . . 7 ((𝐶 ∈ V ∧ 𝐴 ∈ V) → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3410, 32, 33syl2anc 585 . . . . . 6 (𝜑 → (𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) = ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}))
3534reseq1d 5902 . . . . 5 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})))
36 fvexd 6819 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ∈ V)
37 fvexd 6819 . . . . . . . . 9 (𝜑 → (comp‘ndx) ∈ V)
3817elexd 3457 . . . . . . . . 9 (𝜑𝐻 ∈ V)
3918elexd 3457 . . . . . . . . 9 (𝜑· ∈ V)
40 simp1 1136 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (Hom ‘ndx))
4140necomd 2997 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (Base‘ndx))
4219, 41mp1i 13 . . . . . . . . 9 (𝜑 → (Hom ‘ndx) ≠ (Base‘ndx))
43 simp2 1137 . . . . . . . . . . 11 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Base‘ndx) ≠ (comp‘ndx))
4443necomd 2997 . . . . . . . . . 10 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Base‘ndx))
4519, 44mp1i 13 . . . . . . . . 9 (𝜑 → (comp‘ndx) ≠ (Base‘ndx))
468, 36, 37, 38, 39, 42, 45tpres 7108 . . . . . . . 8 (𝜑 → (𝐶 ↾ (V ∖ {(Base‘ndx)})) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
4746uneq1d 4102 . . . . . . 7 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩}))
48 df-tp 4570 . . . . . . 7 {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} = ({⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∪ {⟨(Base‘ndx), 𝐴⟩})
4947, 48eqtr4di 2794 . . . . . 6 (𝜑 → ((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) = {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
50 fvexd 6819 . . . . . 6 (𝜑 → (Base‘ndx) ∈ V)
51 simp3 1138 . . . . . . . 8 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx))
5251necomd 2997 . . . . . . 7 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx))
5319, 52mp1i 13 . . . . . 6 (𝜑 → (comp‘ndx) ≠ (Hom ‘ndx))
5419, 40mp1i 13 . . . . . 6 (𝜑 → (Base‘ndx) ≠ (Hom ‘ndx))
5549, 37, 50, 39, 32, 53, 54tpres 7108 . . . . 5 (𝜑 → (((𝐶 ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), 𝐴⟩}) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5635, 55eqtrd 2776 . . . 4 (𝜑 → ((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) = {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩})
5756uneq1d 4102 . . 3 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}))
58 df-tp 4570 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩})
59 tprot 4689 . . . 4 {⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩} = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6058, 59eqtr3i 2766 . . 3 ({⟨(comp‘ndx), · ⟩, ⟨(Base‘ndx), 𝐴⟩} ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩}
6157, 60eqtrdi 2792 . 2 (𝜑 → (((𝐶 sSet ⟨(Base‘ndx), 𝐴⟩) ↾ (V ∖ {(Hom ‘ndx)})) ∪ {⟨(Hom ‘ndx), 𝐺⟩}) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
624, 31, 613eqtrd 2780 1 (𝜑 → ((𝐶s 𝐴) sSet ⟨(Hom ‘ndx), 𝐺⟩) = {⟨(Base‘ndx), 𝐴⟩, ⟨(Hom ‘ndx), 𝐺⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2104  wne 2941  Vcvv 3437  cdif 3889  cun 3890  wss 3892  {csn 4565  {cpr 4567  {ctp 4569  cop 4571  cres 5602  Fun wfun 6452  cfv 6458  (class class class)co 7307   sSet csts 16913  ndxcnx 16943  Basecbs 16961  s cress 16990  Hom chom 17022  compcco 17023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-z 12370  df-dec 12488  df-sets 16914  df-slot 16932  df-ndx 16944  df-base 16962  df-ress 16991  df-hom 17035  df-cco 17036
This theorem is referenced by:  dfrngc2  45774  dfringc2  45820  rngcresringcat  45832
  Copyright terms: Public domain W3C validator