Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgblthelfgott Structured version   Visualization version   GIF version

Theorem tgblthelfgott 42379
Description: The ternary Goldbach conjecture is valid for all odd numbers less than 8.8 x 10^30 (actually 8.875694 x 10^30, see section 1.2.2 in [Helfgott] p. 4, using bgoldbachlt 42377, ax-hgprmladder 42378 and bgoldbtbnd 42373. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
tgblthelfgott ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )

Proof of Theorem tgblthelfgott
Dummy variables 𝑛 𝑑 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hgprmladder 42378 . 2 𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
2 1nn0 11556 . . . . . . . . . 10 1 ∈ ℕ0
3 1nn 11287 . . . . . . . . . 10 1 ∈ ℕ
42, 3decnncl 11761 . . . . . . . . 9 11 ∈ ℕ
54nnzi 11648 . . . . . . . 8 11 ∈ ℤ
6 8nn0 11563 . . . . . . . . . . 11 8 ∈ ℕ0
7 8nn 11372 . . . . . . . . . . 11 8 ∈ ℕ
86, 7decnncl 11761 . . . . . . . . . 10 88 ∈ ℕ
9 10nn 11756 . . . . . . . . . . 11 10 ∈ ℕ
10 2nn0 11557 . . . . . . . . . . . . 13 2 ∈ ℕ0
11 9nn 11376 . . . . . . . . . . . . 13 9 ∈ ℕ
1210, 11decnncl 11761 . . . . . . . . . . . 12 29 ∈ ℕ
1312nnnn0i 11547 . . . . . . . . . . 11 29 ∈ ℕ0
14 nnexpcl 13080 . . . . . . . . . . 11 ((10 ∈ ℕ ∧ 29 ∈ ℕ0) → (10↑29) ∈ ℕ)
159, 13, 14mp2an 683 . . . . . . . . . 10 (10↑29) ∈ ℕ
168, 15nnmulcli 11301 . . . . . . . . 9 (88 · (10↑29)) ∈ ℕ
1716nnzi 11648 . . . . . . . 8 (88 · (10↑29)) ∈ ℤ
18 1re 10293 . . . . . . . . . . 11 1 ∈ ℝ
198nnrei 11284 . . . . . . . . . . 11 88 ∈ ℝ
2018, 19pm3.2i 462 . . . . . . . . . 10 (1 ∈ ℝ ∧ 88 ∈ ℝ)
21 0le1 10805 . . . . . . . . . . 11 0 ≤ 1
22 1lt10 11880 . . . . . . . . . . . 12 1 < 10
237, 6, 2, 22declti 11779 . . . . . . . . . . 11 1 < 88
2421, 23pm3.2i 462 . . . . . . . . . 10 (0 ≤ 1 ∧ 1 < 88)
25 nnexpcl 13080 . . . . . . . . . . . . 13 ((10 ∈ ℕ ∧ 1 ∈ ℕ0) → (10↑1) ∈ ℕ)
269, 2, 25mp2an 683 . . . . . . . . . . . 12 (10↑1) ∈ ℕ
2726nnrei 11284 . . . . . . . . . . 11 (10↑1) ∈ ℝ
2815nnrei 11284 . . . . . . . . . . 11 (10↑29) ∈ ℝ
2927, 28pm3.2i 462 . . . . . . . . . 10 ((10↑1) ∈ ℝ ∧ (10↑29) ∈ ℝ)
30 0re 10295 . . . . . . . . . . . . 13 0 ∈ ℝ
31 10re 11759 . . . . . . . . . . . . 13 10 ∈ ℝ
32 10pos 11757 . . . . . . . . . . . . 13 0 < 10
3330, 31, 32ltleii 10414 . . . . . . . . . . . 12 0 ≤ 10
349nncni 11285 . . . . . . . . . . . . 13 10 ∈ ℂ
35 exp1 13073 . . . . . . . . . . . . 13 (10 ∈ ℂ → (10↑1) = 10)
3634, 35ax-mp 5 . . . . . . . . . . . 12 (10↑1) = 10
3733, 36breqtrri 4836 . . . . . . . . . . 11 0 ≤ (10↑1)
38 1z 11654 . . . . . . . . . . . . 13 1 ∈ ℤ
3912nnzi 11648 . . . . . . . . . . . . 13 29 ∈ ℤ
4031, 38, 393pm3.2i 1438 . . . . . . . . . . . 12 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 29 ∈ ℤ)
41 2nn 11345 . . . . . . . . . . . . . 14 2 ∈ ℕ
42 9nn0 11564 . . . . . . . . . . . . . 14 9 ∈ ℕ0
4341, 42, 2, 22declti 11779 . . . . . . . . . . . . 13 1 < 29
4422, 43pm3.2i 462 . . . . . . . . . . . 12 (1 < 10 ∧ 1 < 29)
45 ltexp2a 13119 . . . . . . . . . . . 12 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 29 ∈ ℤ) ∧ (1 < 10 ∧ 1 < 29)) → (10↑1) < (10↑29))
4640, 44, 45mp2an 683 . . . . . . . . . . 11 (10↑1) < (10↑29)
4737, 46pm3.2i 462 . . . . . . . . . 10 (0 ≤ (10↑1) ∧ (10↑1) < (10↑29))
48 ltmul12a 11133 . . . . . . . . . 10 ((((1 ∈ ℝ ∧ 88 ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < 88)) ∧ (((10↑1) ∈ ℝ ∧ (10↑29) ∈ ℝ) ∧ (0 ≤ (10↑1) ∧ (10↑1) < (10↑29)))) → (1 · (10↑1)) < (88 · (10↑29)))
4920, 24, 29, 47, 48mp4an 684 . . . . . . . . 9 (1 · (10↑1)) < (88 · (10↑29))
5026nnzi 11648 . . . . . . . . . . . 12 (10↑1) ∈ ℤ
51 zmulcl 11673 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (10↑1) ∈ ℤ) → (1 · (10↑1)) ∈ ℤ)
5238, 50, 51mp2an 683 . . . . . . . . . . 11 (1 · (10↑1)) ∈ ℤ
53 zltp1le 11674 . . . . . . . . . . 11 (((1 · (10↑1)) ∈ ℤ ∧ (88 · (10↑29)) ∈ ℤ) → ((1 · (10↑1)) < (88 · (10↑29)) ↔ ((1 · (10↑1)) + 1) ≤ (88 · (10↑29))))
5452, 17, 53mp2an 683 . . . . . . . . . 10 ((1 · (10↑1)) < (88 · (10↑29)) ↔ ((1 · (10↑1)) + 1) ≤ (88 · (10↑29)))
55 1t10e1p1e11 42054 . . . . . . . . . . . 12 11 = ((1 · (10↑1)) + 1)
5655eqcomi 2774 . . . . . . . . . . 11 ((1 · (10↑1)) + 1) = 11
5756breq1i 4816 . . . . . . . . . 10 (((1 · (10↑1)) + 1) ≤ (88 · (10↑29)) ↔ 11 ≤ (88 · (10↑29)))
5854, 57bitri 266 . . . . . . . . 9 ((1 · (10↑1)) < (88 · (10↑29)) ↔ 11 ≤ (88 · (10↑29)))
5949, 58mpbi 221 . . . . . . . 8 11 ≤ (88 · (10↑29))
60 eluz2 11892 . . . . . . . 8 ((88 · (10↑29)) ∈ (ℤ11) ↔ (11 ∈ ℤ ∧ (88 · (10↑29)) ∈ ℤ ∧ 11 ≤ (88 · (10↑29))))
615, 17, 59, 60mpbir3an 1441 . . . . . . 7 (88 · (10↑29)) ∈ (ℤ11)
6261a1i 11 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (88 · (10↑29)) ∈ (ℤ11))
63 4nn 11356 . . . . . . . . . 10 4 ∈ ℕ
642, 7decnncl 11761 . . . . . . . . . . . 12 18 ∈ ℕ
6564nnnn0i 11547 . . . . . . . . . . 11 18 ∈ ℕ0
66 nnexpcl 13080 . . . . . . . . . . 11 ((10 ∈ ℕ ∧ 18 ∈ ℕ0) → (10↑18) ∈ ℕ)
679, 65, 66mp2an 683 . . . . . . . . . 10 (10↑18) ∈ ℕ
6863, 67nnmulcli 11301 . . . . . . . . 9 (4 · (10↑18)) ∈ ℕ
6968nnzi 11648 . . . . . . . 8 (4 · (10↑18)) ∈ ℤ
70 4re 11357 . . . . . . . . . . 11 4 ∈ ℝ
7118, 70pm3.2i 462 . . . . . . . . . 10 (1 ∈ ℝ ∧ 4 ∈ ℝ)
72 1lt4 11454 . . . . . . . . . . 11 1 < 4
7321, 72pm3.2i 462 . . . . . . . . . 10 (0 ≤ 1 ∧ 1 < 4)
7467nnrei 11284 . . . . . . . . . . 11 (10↑18) ∈ ℝ
7527, 74pm3.2i 462 . . . . . . . . . 10 ((10↑1) ∈ ℝ ∧ (10↑18) ∈ ℝ)
7664nnzi 11648 . . . . . . . . . . . . 13 18 ∈ ℤ
7731, 38, 763pm3.2i 1438 . . . . . . . . . . . 12 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 18 ∈ ℤ)
783, 6, 2, 22declti 11779 . . . . . . . . . . . . 13 1 < 18
7922, 78pm3.2i 462 . . . . . . . . . . . 12 (1 < 10 ∧ 1 < 18)
80 ltexp2a 13119 . . . . . . . . . . . 12 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 18 ∈ ℤ) ∧ (1 < 10 ∧ 1 < 18)) → (10↑1) < (10↑18))
8177, 79, 80mp2an 683 . . . . . . . . . . 11 (10↑1) < (10↑18)
8237, 81pm3.2i 462 . . . . . . . . . 10 (0 ≤ (10↑1) ∧ (10↑1) < (10↑18))
83 ltmul12a 11133 . . . . . . . . . 10 ((((1 ∈ ℝ ∧ 4 ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < 4)) ∧ (((10↑1) ∈ ℝ ∧ (10↑18) ∈ ℝ) ∧ (0 ≤ (10↑1) ∧ (10↑1) < (10↑18)))) → (1 · (10↑1)) < (4 · (10↑18)))
8471, 73, 75, 82, 83mp4an 684 . . . . . . . . 9 (1 · (10↑1)) < (4 · (10↑18))
85 4z 11658 . . . . . . . . . . . 12 4 ∈ ℤ
8667nnzi 11648 . . . . . . . . . . . 12 (10↑18) ∈ ℤ
87 zmulcl 11673 . . . . . . . . . . . 12 ((4 ∈ ℤ ∧ (10↑18) ∈ ℤ) → (4 · (10↑18)) ∈ ℤ)
8885, 86, 87mp2an 683 . . . . . . . . . . 11 (4 · (10↑18)) ∈ ℤ
89 zltp1le 11674 . . . . . . . . . . 11 (((1 · (10↑1)) ∈ ℤ ∧ (4 · (10↑18)) ∈ ℤ) → ((1 · (10↑1)) < (4 · (10↑18)) ↔ ((1 · (10↑1)) + 1) ≤ (4 · (10↑18))))
9052, 88, 89mp2an 683 . . . . . . . . . 10 ((1 · (10↑1)) < (4 · (10↑18)) ↔ ((1 · (10↑1)) + 1) ≤ (4 · (10↑18)))
9156breq1i 4816 . . . . . . . . . 10 (((1 · (10↑1)) + 1) ≤ (4 · (10↑18)) ↔ 11 ≤ (4 · (10↑18)))
9290, 91bitri 266 . . . . . . . . 9 ((1 · (10↑1)) < (4 · (10↑18)) ↔ 11 ≤ (4 · (10↑18)))
9384, 92mpbi 221 . . . . . . . 8 11 ≤ (4 · (10↑18))
94 eluz2 11892 . . . . . . . 8 ((4 · (10↑18)) ∈ (ℤ11) ↔ (11 ∈ ℤ ∧ (4 · (10↑18)) ∈ ℤ ∧ 11 ≤ (4 · (10↑18))))
955, 69, 93, 94mpbir3an 1441 . . . . . . 7 (4 · (10↑18)) ∈ (ℤ11)
9695a1i 11 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (4 · (10↑18)) ∈ (ℤ11))
97 simpl 474 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ Even )
98 simprl 787 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 4 < 𝑛)
99 evenz 42219 . . . . . . . . . . . . . 14 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
10099zred 11729 . . . . . . . . . . . . 13 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
10168nnrei 11284 . . . . . . . . . . . . 13 (4 · (10↑18)) ∈ ℝ
102 ltle 10380 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ (4 · (10↑18)) ∈ ℝ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
103100, 101, 102sylancl 580 . . . . . . . . . . . 12 (𝑛 ∈ Even → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
104103a1d 25 . . . . . . . . . . 11 (𝑛 ∈ Even → (4 < 𝑛 → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18)))))
105104imp32 409 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ≤ (4 · (10↑18)))
106 ax-bgbltosilva 42374 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 ≤ (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )
10797, 98, 105, 106syl3anc 1490 . . . . . . . . 9 ((𝑛 ∈ Even ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ GoldbachEven )
108107ex 401 . . . . . . . 8 (𝑛 ∈ Even → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
109108a1i 11 . . . . . . 7 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
110109ralrimiv 3112 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
111 simpl 474 . . . . . . 7 ((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) → 𝑑 ∈ (ℤ‘3))
112111ad2antrr 717 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → 𝑑 ∈ (ℤ‘3))
113 simpr 477 . . . . . . 7 ((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) → 𝑓 ∈ (RePart‘𝑑))
114113ad2antrr 717 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → 𝑓 ∈ (RePart‘𝑑))
115 simpr 477 . . . . . . 7 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
116115ad2antlr 718 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
117 simpl1 1242 . . . . . . 7 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (𝑓‘0) = 7)
118117ad2antlr 718 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑓‘0) = 7)
119 simpl2 1244 . . . . . . 7 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (𝑓‘1) = 13)
120119ad2antlr 718 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑓‘1) = 13)
1216, 11decnncl 11761 . . . . . . . . . . . . 13 89 ∈ ℕ
122121nnrei 11284 . . . . . . . . . . . 12 89 ∈ ℝ
12315nngt0i 11311 . . . . . . . . . . . . 13 0 < (10↑29)
12428, 123pm3.2i 462 . . . . . . . . . . . 12 ((10↑29) ∈ ℝ ∧ 0 < (10↑29))
12519, 122, 1243pm3.2i 1438 . . . . . . . . . . 11 (88 ∈ ℝ ∧ 89 ∈ ℝ ∧ ((10↑29) ∈ ℝ ∧ 0 < (10↑29)))
126 8lt9 11477 . . . . . . . . . . . 12 8 < 9
1276, 6, 11, 126declt 11769 . . . . . . . . . . 11 88 < 89
128 ltmul1a 11126 . . . . . . . . . . 11 (((88 ∈ ℝ ∧ 89 ∈ ℝ ∧ ((10↑29) ∈ ℝ ∧ 0 < (10↑29))) ∧ 88 < 89) → (88 · (10↑29)) < (89 · (10↑29)))
129125, 127, 128mp2an 683 . . . . . . . . . 10 (88 · (10↑29)) < (89 · (10↑29))
130 breq2 4813 . . . . . . . . . 10 ((𝑓𝑑) = (89 · (10↑29)) → ((88 · (10↑29)) < (𝑓𝑑) ↔ (88 · (10↑29)) < (89 · (10↑29))))
131129, 130mpbiri 249 . . . . . . . . 9 ((𝑓𝑑) = (89 · (10↑29)) → (88 · (10↑29)) < (𝑓𝑑))
1321313ad2ant3 1165 . . . . . . . 8 (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) → (88 · (10↑29)) < (𝑓𝑑))
133132adantr 472 . . . . . . 7 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (88 · (10↑29)) < (𝑓𝑑))
134133ad2antlr 718 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (88 · (10↑29)) < (𝑓𝑑))
135121, 15nnmulcli 11301 . . . . . . . . . . 11 (89 · (10↑29)) ∈ ℕ
136135nnrei 11284 . . . . . . . . . 10 (89 · (10↑29)) ∈ ℝ
137 eleq1 2832 . . . . . . . . . 10 ((𝑓𝑑) = (89 · (10↑29)) → ((𝑓𝑑) ∈ ℝ ↔ (89 · (10↑29)) ∈ ℝ))
138136, 137mpbiri 249 . . . . . . . . 9 ((𝑓𝑑) = (89 · (10↑29)) → (𝑓𝑑) ∈ ℝ)
1391383ad2ant3 1165 . . . . . . . 8 (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) → (𝑓𝑑) ∈ ℝ)
140139adantr 472 . . . . . . 7 ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → (𝑓𝑑) ∈ ℝ)
141140ad2antlr 718 . . . . . 6 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → (𝑓𝑑) ∈ ℝ)
14262, 96, 110, 112, 114, 116, 118, 120, 134, 141bgoldbtbnd 42373 . . . . 5 ((((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) ∧ (((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))) ∧ (𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29)))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
143142exp31 410 . . . 4 ((𝑑 ∈ (ℤ‘3) ∧ 𝑓 ∈ (RePart‘𝑑)) → ((((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
144143rexlimivv 3183 . . 3 (∃𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
145 breq2 4813 . . . . . . . 8 (𝑛 = 𝑁 → (7 < 𝑛 ↔ 7 < 𝑁))
146 breq1 4812 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 < (88 · (10↑29)) ↔ 𝑁 < (88 · (10↑29))))
147145, 146anbi12d 624 . . . . . . 7 (𝑛 = 𝑁 → ((7 < 𝑛𝑛 < (88 · (10↑29))) ↔ (7 < 𝑁𝑁 < (88 · (10↑29)))))
148 eleq1 2832 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
149147, 148imbi12d 335 . . . . . 6 (𝑛 = 𝑁 → (((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) ↔ ((7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )))
150149rspcv 3457 . . . . 5 (𝑁 ∈ Odd → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) → ((7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )))
151150com23 86 . . . 4 (𝑁 ∈ Odd → ((7 < 𝑁𝑁 < (88 · (10↑29))) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd )))
1521513impib 1144 . . 3 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
153144, 152sylcom 30 . 2 (∃𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)))) → ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd ))
1541, 153ax-mp 5 1 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 < (88 · (10↑29))) → 𝑁 ∈ GoldbachOdd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wrex 3056  cdif 3729  {csn 4334   class class class wbr 4809  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  cn 11274  2c2 11327  3c3 11328  4c4 11329  7c7 11332  8c8 11333  9c9 11334  0cn0 11538  cz 11624  cdc 11740  cuz 11886  ..^cfzo 12673  cexp 13067  cprime 15665  RePartciccp 42083   Even ceven 42213   Odd codd 42214   GoldbachEven cgbe 42309   GoldbachOdd cgbo 42311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-bgbltosilva 42374  ax-hgprmladder 42378
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-rp 12029  df-ico 12383  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-dvds 15266  df-prm 15666  df-iccp 42084  df-even 42215  df-odd 42216  df-gbe 42312  df-gbo 42314
This theorem is referenced by:  tgoldbachlt  42380
  Copyright terms: Public domain W3C validator