Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbachlt Structured version   Visualization version   GIF version

Theorem bgoldbachlt 44063
Description: The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 44060. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
bgoldbachlt 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem bgoldbachlt
StepHypRef Expression
1 4nn 11707 . . 3 4 ∈ ℕ
2 10nn 12101 . . . 4 10 ∈ ℕ
3 1nn0 11900 . . . . 5 1 ∈ ℕ0
4 8nn0 11907 . . . . 5 8 ∈ ℕ0
53, 4deccl 12100 . . . 4 18 ∈ ℕ0
6 nnexpcl 13432 . . . 4 ((10 ∈ ℕ ∧ 18 ∈ ℕ0) → (10↑18) ∈ ℕ)
72, 5, 6mp2an 690 . . 3 (10↑18) ∈ ℕ
81, 7nnmulcli 11649 . 2 (4 · (10↑18)) ∈ ℕ
9 id 22 . . 3 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℕ)
10 breq2 5056 . . . . 5 (𝑚 = (4 · (10↑18)) → ((4 · (10↑18)) ≤ 𝑚 ↔ (4 · (10↑18)) ≤ (4 · (10↑18))))
11 breq2 5056 . . . . . . . 8 (𝑚 = (4 · (10↑18)) → (𝑛 < 𝑚𝑛 < (4 · (10↑18))))
1211anbi2d 630 . . . . . . 7 (𝑚 = (4 · (10↑18)) → ((4 < 𝑛𝑛 < 𝑚) ↔ (4 < 𝑛𝑛 < (4 · (10↑18)))))
1312imbi1d 344 . . . . . 6 (𝑚 = (4 · (10↑18)) → (((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1413ralbidv 3197 . . . . 5 (𝑚 = (4 · (10↑18)) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1510, 14anbi12d 632 . . . 4 (𝑚 = (4 · (10↑18)) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
1615adantl 484 . . 3 (((4 · (10↑18)) ∈ ℕ ∧ 𝑚 = (4 · (10↑18))) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
17 nnre 11631 . . . . 5 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℝ)
1817leidd 11192 . . . 4 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ≤ (4 · (10↑18)))
19 simplr 767 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ Even )
20 simprl 769 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 4 < 𝑛)
21 evenz 43880 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
2221zred 12074 . . . . . . . . . 10 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
23 ltle 10715 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ (4 · (10↑18)) ∈ ℝ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2422, 17, 23syl2anr 598 . . . . . . . . 9 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2524a1d 25 . . . . . . . 8 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (4 < 𝑛 → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18)))))
2625imp32 421 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ≤ (4 · (10↑18)))
27 ax-bgbltosilva 44060 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 ≤ (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )
2819, 20, 26, 27syl3anc 1367 . . . . . 6 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ GoldbachEven )
2928ex 415 . . . . 5 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3029ralrimiva 3182 . . . 4 ((4 · (10↑18)) ∈ ℕ → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3118, 30jca 514 . . 3 ((4 · (10↑18)) ∈ ℕ → ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
329, 16, 31rspcedvd 3618 . 2 ((4 · (10↑18)) ∈ ℕ → ∃𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )))
338, 32ax-mp 5 1 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139   class class class wbr 5052  (class class class)co 7142  cr 10522  0cc0 10523  1c1 10524   · cmul 10528   < clt 10661  cle 10662  cn 11624  4c4 11681  8c8 11685  0cn0 11884  cdc 12085  cexp 13419   Even ceven 43874   GoldbachEven cgbe 43995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-bgbltosilva 44060
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-seq 13360  df-exp 13420  df-even 43876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator