Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbachlt Structured version   Visualization version   GIF version

Theorem bgoldbachlt 47805
Description: The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 47802. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
bgoldbachlt 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem bgoldbachlt
StepHypRef Expression
1 4nn 12350 . . 3 4 ∈ ℕ
2 10nn 12751 . . . 4 10 ∈ ℕ
3 1nn0 12544 . . . . 5 1 ∈ ℕ0
4 8nn0 12551 . . . . 5 8 ∈ ℕ0
53, 4deccl 12750 . . . 4 18 ∈ ℕ0
6 nnexpcl 14116 . . . 4 ((10 ∈ ℕ ∧ 18 ∈ ℕ0) → (10↑18) ∈ ℕ)
72, 5, 6mp2an 692 . . 3 (10↑18) ∈ ℕ
81, 7nnmulcli 12292 . 2 (4 · (10↑18)) ∈ ℕ
9 id 22 . . 3 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℕ)
10 breq2 5146 . . . . 5 (𝑚 = (4 · (10↑18)) → ((4 · (10↑18)) ≤ 𝑚 ↔ (4 · (10↑18)) ≤ (4 · (10↑18))))
11 breq2 5146 . . . . . . . 8 (𝑚 = (4 · (10↑18)) → (𝑛 < 𝑚𝑛 < (4 · (10↑18))))
1211anbi2d 630 . . . . . . 7 (𝑚 = (4 · (10↑18)) → ((4 < 𝑛𝑛 < 𝑚) ↔ (4 < 𝑛𝑛 < (4 · (10↑18)))))
1312imbi1d 341 . . . . . 6 (𝑚 = (4 · (10↑18)) → (((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1413ralbidv 3177 . . . . 5 (𝑚 = (4 · (10↑18)) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1510, 14anbi12d 632 . . . 4 (𝑚 = (4 · (10↑18)) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
1615adantl 481 . . 3 (((4 · (10↑18)) ∈ ℕ ∧ 𝑚 = (4 · (10↑18))) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
17 nnre 12274 . . . . 5 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℝ)
1817leidd 11830 . . . 4 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ≤ (4 · (10↑18)))
19 simplr 768 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ Even )
20 simprl 770 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 4 < 𝑛)
21 evenz 47622 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
2221zred 12724 . . . . . . . . . 10 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
23 ltle 11350 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ (4 · (10↑18)) ∈ ℝ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2422, 17, 23syl2anr 597 . . . . . . . . 9 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2524a1d 25 . . . . . . . 8 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (4 < 𝑛 → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18)))))
2625imp32 418 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ≤ (4 · (10↑18)))
27 ax-bgbltosilva 47802 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 ≤ (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )
2819, 20, 26, 27syl3anc 1372 . . . . . 6 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ GoldbachEven )
2928ex 412 . . . . 5 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3029ralrimiva 3145 . . . 4 ((4 · (10↑18)) ∈ ℕ → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3118, 30jca 511 . . 3 ((4 · (10↑18)) ∈ ℕ → ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
329, 16, 31rspcedvd 3623 . 2 ((4 · (10↑18)) ∈ ℕ → ∃𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )))
338, 32ax-mp 5 1 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   · cmul 11161   < clt 11296  cle 11297  cn 12267  4c4 12324  8c8 12328  0cn0 12528  cdc 12735  cexp 14103   Even ceven 47616   GoldbachEven cgbe 47737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-bgbltosilva 47802
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-seq 14044  df-exp 14104  df-even 47618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator