Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbachlt Structured version   Visualization version   GIF version

Theorem bgoldbachlt 47817
Description: The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 47814. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
bgoldbachlt 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem bgoldbachlt
StepHypRef Expression
1 4nn 12211 . . 3 4 ∈ ℕ
2 10nn 12607 . . . 4 10 ∈ ℕ
3 1nn0 12400 . . . . 5 1 ∈ ℕ0
4 8nn0 12407 . . . . 5 8 ∈ ℕ0
53, 4deccl 12606 . . . 4 18 ∈ ℕ0
6 nnexpcl 13981 . . . 4 ((10 ∈ ℕ ∧ 18 ∈ ℕ0) → (10↑18) ∈ ℕ)
72, 5, 6mp2an 692 . . 3 (10↑18) ∈ ℕ
81, 7nnmulcli 12153 . 2 (4 · (10↑18)) ∈ ℕ
9 id 22 . . 3 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℕ)
10 breq2 5096 . . . . 5 (𝑚 = (4 · (10↑18)) → ((4 · (10↑18)) ≤ 𝑚 ↔ (4 · (10↑18)) ≤ (4 · (10↑18))))
11 breq2 5096 . . . . . . . 8 (𝑚 = (4 · (10↑18)) → (𝑛 < 𝑚𝑛 < (4 · (10↑18))))
1211anbi2d 630 . . . . . . 7 (𝑚 = (4 · (10↑18)) → ((4 < 𝑛𝑛 < 𝑚) ↔ (4 < 𝑛𝑛 < (4 · (10↑18)))))
1312imbi1d 341 . . . . . 6 (𝑚 = (4 · (10↑18)) → (((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1413ralbidv 3152 . . . . 5 (𝑚 = (4 · (10↑18)) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1510, 14anbi12d 632 . . . 4 (𝑚 = (4 · (10↑18)) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
1615adantl 481 . . 3 (((4 · (10↑18)) ∈ ℕ ∧ 𝑚 = (4 · (10↑18))) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
17 nnre 12135 . . . . 5 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℝ)
1817leidd 11686 . . . 4 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ≤ (4 · (10↑18)))
19 simplr 768 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ Even )
20 simprl 770 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 4 < 𝑛)
21 evenz 47634 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
2221zred 12580 . . . . . . . . . 10 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
23 ltle 11204 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ (4 · (10↑18)) ∈ ℝ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2422, 17, 23syl2anr 597 . . . . . . . . 9 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2524a1d 25 . . . . . . . 8 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (4 < 𝑛 → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18)))))
2625imp32 418 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ≤ (4 · (10↑18)))
27 ax-bgbltosilva 47814 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 ≤ (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )
2819, 20, 26, 27syl3anc 1373 . . . . . 6 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ GoldbachEven )
2928ex 412 . . . . 5 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3029ralrimiva 3121 . . . 4 ((4 · (10↑18)) ∈ ℕ → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3118, 30jca 511 . . 3 ((4 · (10↑18)) ∈ ℕ → ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
329, 16, 31rspcedvd 3579 . 2 ((4 · (10↑18)) ∈ ℕ → ∃𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )))
338, 32ax-mp 5 1 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150  cn 12128  4c4 12185  8c8 12189  0cn0 12384  cdc 12591  cexp 13968   Even ceven 47628   GoldbachEven cgbe 47749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-bgbltosilva 47814
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-seq 13909  df-exp 13969  df-even 47630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator