Proof of Theorem even3prm2
Step | Hyp | Ref
| Expression |
1 | | olc 865 |
. . . 4
⊢ (𝑅 = 2 → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)) |
2 | 1 | a1d 25 |
. . 3
⊢ (𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))) |
3 | | df-ne 2944 |
. . . . . . . . . . . 12
⊢ (𝑅 ≠ 2 ↔ ¬ 𝑅 = 2) |
4 | | eldifsn 4720 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (ℙ ∖ {2})
↔ (𝑅 ∈ ℙ
∧ 𝑅 ≠
2)) |
5 | | oddprmALTV 45139 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ (ℙ ∖ {2})
→ 𝑅 ∈ Odd
) |
6 | | emoo 45156 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Even ∧ 𝑅 ∈ Odd ) → (𝑁 − 𝑅) ∈ Odd ) |
7 | 6 | expcom 414 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ Odd → (𝑁 ∈ Even → (𝑁 − 𝑅) ∈ Odd )) |
8 | 5, 7 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (ℙ ∖ {2})
→ (𝑁 ∈ Even
→ (𝑁 − 𝑅) ∈ Odd )) |
9 | 4, 8 | sylbir 234 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℙ ∧ 𝑅 ≠ 2) → (𝑁 ∈ Even → (𝑁 − 𝑅) ∈ Odd )) |
10 | 9 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℙ → (𝑅 ≠ 2 → (𝑁 ∈ Even → (𝑁 − 𝑅) ∈ Odd ))) |
11 | 3, 10 | syl5bir 242 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℙ → (¬
𝑅 = 2 → (𝑁 ∈ Even → (𝑁 − 𝑅) ∈ Odd ))) |
12 | 11 | com23 86 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℙ → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁 − 𝑅) ∈ Odd ))) |
13 | 12 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁 − 𝑅) ∈ Odd ))) |
14 | 13 | impcom 408 |
. . . . . . . 8
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (¬
𝑅 = 2 → (𝑁 − 𝑅) ∈ Odd )) |
15 | 14 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (¬ 𝑅 = 2 → (𝑁 − 𝑅) ∈ Odd )) |
16 | 15 | impcom 408 |
. . . . . 6
⊢ ((¬
𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁 − 𝑅) ∈ Odd ) |
17 | | 3simpa 1147 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑄 ∈
ℙ)) |
18 | 17 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ)) |
19 | 18 | adantl 482 |
. . . . . 6
⊢ ((¬
𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ)) |
20 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑁 = ((𝑃 + 𝑄) + 𝑅) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁) |
21 | | evenz 45082 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ Even → 𝑁 ∈
ℤ) |
22 | 21 | zcnd 12427 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ Even → 𝑁 ∈
ℂ) |
23 | 22 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑁 ∈
ℂ) |
24 | | prmz 16380 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℙ → 𝑅 ∈
ℤ) |
25 | 24 | zcnd 12427 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℙ → 𝑅 ∈
ℂ) |
26 | 25 | 3ad2ant3 1134 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈
ℂ) |
27 | 26 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑅 ∈
ℂ) |
28 | | prmz 16380 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
29 | | prmz 16380 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
30 | | zaddcl 12360 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ) |
31 | 28, 29, 30 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ) |
32 | 31 | zcnd 12427 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ) |
33 | 32 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ) |
34 | 33 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑃 + 𝑄) ∈ ℂ) |
35 | 23, 27, 34 | subadd2d 11351 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → ((𝑁 − 𝑅) = (𝑃 + 𝑄) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁)) |
36 | 35 | biimprd 247 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) →
(((𝑃 + 𝑄) + 𝑅) = 𝑁 → (𝑁 − 𝑅) = (𝑃 + 𝑄))) |
37 | 20, 36 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑁 = ((𝑃 + 𝑄) + 𝑅) → (𝑁 − 𝑅) = (𝑃 + 𝑄))) |
38 | 37 | 3impia 1116 |
. . . . . . 7
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 − 𝑅) = (𝑃 + 𝑄)) |
39 | 38 | adantl 482 |
. . . . . 6
⊢ ((¬
𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁 − 𝑅) = (𝑃 + 𝑄)) |
40 | | odd2prm2 45170 |
. . . . . 6
⊢ (((𝑁 − 𝑅) ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑁 − 𝑅) = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
41 | 16, 19, 39, 40 | syl3anc 1370 |
. . . . 5
⊢ ((¬
𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 = 2 ∨ 𝑄 = 2)) |
42 | 41 | orcd 870 |
. . . 4
⊢ ((¬
𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)) |
43 | 42 | ex 413 |
. . 3
⊢ (¬
𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))) |
44 | 2, 43 | pm2.61i 182 |
. 2
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)) |
45 | | df-3or 1087 |
. 2
⊢ ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) ↔ ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)) |
46 | 44, 45 | sylibr 233 |
1
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) |