Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  even3prm2 Structured version   Visualization version   GIF version

Theorem even3prm2 46377
Description: If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.)
Assertion
Ref Expression
even3prm2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))

Proof of Theorem even3prm2
StepHypRef Expression
1 olc 866 . . . 4 (𝑅 = 2 → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
21a1d 25 . . 3 (𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
3 df-ne 2941 . . . . . . . . . . . 12 (𝑅 ≠ 2 ↔ ¬ 𝑅 = 2)
4 eldifsn 4790 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) ↔ (𝑅 ∈ ℙ ∧ 𝑅 ≠ 2))
5 oddprmALTV 46345 . . . . . . . . . . . . . . 15 (𝑅 ∈ (ℙ ∖ {2}) → 𝑅 ∈ Odd )
6 emoo 46362 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Even ∧ 𝑅 ∈ Odd ) → (𝑁𝑅) ∈ Odd )
76expcom 414 . . . . . . . . . . . . . . 15 (𝑅 ∈ Odd → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
85, 7syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
94, 8sylbir 234 . . . . . . . . . . . . 13 ((𝑅 ∈ ℙ ∧ 𝑅 ≠ 2) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
109ex 413 . . . . . . . . . . . 12 (𝑅 ∈ ℙ → (𝑅 ≠ 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
113, 10biimtrrid 242 . . . . . . . . . . 11 (𝑅 ∈ ℙ → (¬ 𝑅 = 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
1211com23 86 . . . . . . . . . 10 (𝑅 ∈ ℙ → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
13123ad2ant3 1135 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
1413impcom 408 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
15143adant3 1132 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
1615impcom 408 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) ∈ Odd )
17 3simpa 1148 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
18173ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
1918adantl 482 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
20 eqcom 2739 . . . . . . . . 9 (𝑁 = ((𝑃 + 𝑄) + 𝑅) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁)
21 evenz 46288 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
2221zcnd 12666 . . . . . . . . . . . 12 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
2322adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑁 ∈ ℂ)
24 prmz 16611 . . . . . . . . . . . . . 14 (𝑅 ∈ ℙ → 𝑅 ∈ ℤ)
2524zcnd 12666 . . . . . . . . . . . . 13 (𝑅 ∈ ℙ → 𝑅 ∈ ℂ)
26253ad2ant3 1135 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
2726adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑅 ∈ ℂ)
28 prmz 16611 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 prmz 16611 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
30 zaddcl 12601 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ)
3128, 29, 30syl2an 596 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ)
3231zcnd 12666 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
33323adant3 1132 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
3433adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑃 + 𝑄) ∈ ℂ)
3523, 27, 34subadd2d 11589 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → ((𝑁𝑅) = (𝑃 + 𝑄) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁))
3635biimprd 247 . . . . . . . . 9 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (((𝑃 + 𝑄) + 𝑅) = 𝑁 → (𝑁𝑅) = (𝑃 + 𝑄)))
3720, 36biimtrid 241 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑁 = ((𝑃 + 𝑄) + 𝑅) → (𝑁𝑅) = (𝑃 + 𝑄)))
38373impia 1117 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑁𝑅) = (𝑃 + 𝑄))
3938adantl 482 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) = (𝑃 + 𝑄))
40 odd2prm2 46376 . . . . . 6 (((𝑁𝑅) ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑁𝑅) = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))
4116, 19, 39, 40syl3anc 1371 . . . . 5 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 = 2 ∨ 𝑄 = 2))
4241orcd 871 . . . 4 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4342ex 413 . . 3 𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
442, 43pm2.61i 182 . 2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
45 df-3or 1088 . 2 ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) ↔ ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4644, 45sylibr 233 1 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2940  cdif 3945  {csn 4628  (class class class)co 7408  cc 11107   + caddc 11112  cmin 11443  2c2 12266  cz 12557  cprime 16607   Even ceven 46282   Odd codd 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-dvds 16197  df-prm 16608  df-even 46284  df-odd 46285
This theorem is referenced by:  mogoldbblem  46378
  Copyright terms: Public domain W3C validator