Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  even3prm2 Structured version   Visualization version   GIF version

Theorem even3prm2 46387
Description: If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.)
Assertion
Ref Expression
even3prm2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))

Proof of Theorem even3prm2
StepHypRef Expression
1 olc 867 . . . 4 (𝑅 = 2 → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
21a1d 25 . . 3 (𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
3 df-ne 2942 . . . . . . . . . . . 12 (𝑅 ≠ 2 ↔ ¬ 𝑅 = 2)
4 eldifsn 4791 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) ↔ (𝑅 ∈ ℙ ∧ 𝑅 ≠ 2))
5 oddprmALTV 46355 . . . . . . . . . . . . . . 15 (𝑅 ∈ (ℙ ∖ {2}) → 𝑅 ∈ Odd )
6 emoo 46372 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Even ∧ 𝑅 ∈ Odd ) → (𝑁𝑅) ∈ Odd )
76expcom 415 . . . . . . . . . . . . . . 15 (𝑅 ∈ Odd → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
85, 7syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
94, 8sylbir 234 . . . . . . . . . . . . 13 ((𝑅 ∈ ℙ ∧ 𝑅 ≠ 2) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
109ex 414 . . . . . . . . . . . 12 (𝑅 ∈ ℙ → (𝑅 ≠ 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
113, 10biimtrrid 242 . . . . . . . . . . 11 (𝑅 ∈ ℙ → (¬ 𝑅 = 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
1211com23 86 . . . . . . . . . 10 (𝑅 ∈ ℙ → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
13123ad2ant3 1136 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
1413impcom 409 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
15143adant3 1133 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
1615impcom 409 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) ∈ Odd )
17 3simpa 1149 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
18173ad2ant2 1135 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
1918adantl 483 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
20 eqcom 2740 . . . . . . . . 9 (𝑁 = ((𝑃 + 𝑄) + 𝑅) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁)
21 evenz 46298 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
2221zcnd 12667 . . . . . . . . . . . 12 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
2322adantr 482 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑁 ∈ ℂ)
24 prmz 16612 . . . . . . . . . . . . . 14 (𝑅 ∈ ℙ → 𝑅 ∈ ℤ)
2524zcnd 12667 . . . . . . . . . . . . 13 (𝑅 ∈ ℙ → 𝑅 ∈ ℂ)
26253ad2ant3 1136 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
2726adantl 483 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑅 ∈ ℂ)
28 prmz 16612 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 prmz 16612 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
30 zaddcl 12602 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ)
3128, 29, 30syl2an 597 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ)
3231zcnd 12667 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
33323adant3 1133 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
3433adantl 483 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑃 + 𝑄) ∈ ℂ)
3523, 27, 34subadd2d 11590 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → ((𝑁𝑅) = (𝑃 + 𝑄) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁))
3635biimprd 247 . . . . . . . . 9 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (((𝑃 + 𝑄) + 𝑅) = 𝑁 → (𝑁𝑅) = (𝑃 + 𝑄)))
3720, 36biimtrid 241 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑁 = ((𝑃 + 𝑄) + 𝑅) → (𝑁𝑅) = (𝑃 + 𝑄)))
38373impia 1118 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑁𝑅) = (𝑃 + 𝑄))
3938adantl 483 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) = (𝑃 + 𝑄))
40 odd2prm2 46386 . . . . . 6 (((𝑁𝑅) ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑁𝑅) = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))
4116, 19, 39, 40syl3anc 1372 . . . . 5 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 = 2 ∨ 𝑄 = 2))
4241orcd 872 . . . 4 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4342ex 414 . . 3 𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
442, 43pm2.61i 182 . 2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
45 df-3or 1089 . 2 ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) ↔ ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4644, 45sylibr 233 1 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2941  cdif 3946  {csn 4629  (class class class)co 7409  cc 11108   + caddc 11113  cmin 11444  2c2 12267  cz 12558  cprime 16608   Even ceven 46292   Odd codd 46293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-prm 16609  df-even 46294  df-odd 46295
This theorem is referenced by:  mogoldbblem  46388
  Copyright terms: Public domain W3C validator