Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbb Structured version   Visualization version   GIF version

Theorem mogoldbb 47773
Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbb (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem mogoldbb
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3253 . 2 𝑛𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)
2 eqeq1 2733 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
32rexbidv 3153 . . . . . . 7 (𝑛 = 𝑚 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
432rexbidv 3194 . . . . . 6 (𝑛 = 𝑚 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
54cbvralvw 3207 . . . . 5 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))
6 6nn 12235 . . . . . . . . 9 6 ∈ ℕ
76nnzi 12517 . . . . . . . 8 6 ∈ ℤ
87a1i 11 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ∈ ℤ)
9 evenz 47618 . . . . . . . . 9 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
10 2z 12525 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℤ)
129, 11zaddcld 12602 . . . . . . . 8 (𝑛 ∈ Even → (𝑛 + 2) ∈ ℤ)
1312adantr 480 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ ℤ)
14 4cn 12231 . . . . . . . . . 10 4 ∈ ℂ
15 2cn 12221 . . . . . . . . . 10 2 ∈ ℂ
16 4p2e6 12294 . . . . . . . . . . 11 (4 + 2) = 6
1716eqcomi 2738 . . . . . . . . . 10 6 = (4 + 2)
1814, 15, 17mvrraddi 11398 . . . . . . . . 9 (6 − 2) = 4
19 2p2e4 12276 . . . . . . . . . 10 (2 + 2) = 4
20 2evenALTV 47680 . . . . . . . . . . 11 2 ∈ Even
21 evenltle 47705 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ 2 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2220, 21mp3an2 1451 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2319, 22eqbrtrrid 5131 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 4 ≤ 𝑛)
2418, 23eqbrtrid 5130 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 − 2) ≤ 𝑛)
25 6re 12236 . . . . . . . . . . . 12 6 ∈ ℝ
2625a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 6 ∈ ℝ)
27 2re 12220 . . . . . . . . . . . 12 2 ∈ ℝ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 2 ∈ ℝ)
299zred 12598 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
3026, 28, 293jca 1128 . . . . . . . . . 10 (𝑛 ∈ Even → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
3130adantr 480 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
32 lesubadd 11610 . . . . . . . . 9 ((6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3331, 32syl 17 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3424, 33mpbid 232 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ≤ (𝑛 + 2))
35 eluz2 12759 . . . . . . 7 ((𝑛 + 2) ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ (𝑛 + 2) ∈ ℤ ∧ 6 ≤ (𝑛 + 2)))
368, 13, 34, 35syl3anbrc 1344 . . . . . 6 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ (ℤ‘6))
37 eqeq1 2733 . . . . . . . . 9 (𝑚 = (𝑛 + 2) → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
3837rexbidv 3153 . . . . . . . 8 (𝑚 = (𝑛 + 2) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
39382rexbidv 3194 . . . . . . 7 (𝑚 = (𝑛 + 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4039rspcv 3575 . . . . . 6 ((𝑛 + 2) ∈ (ℤ‘6) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4136, 40syl 17 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
425, 41biimtrid 242 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
43 nfv 1914 . . . . 5 𝑝(𝑛 ∈ Even ∧ 2 < 𝑛)
44 nfre1 3254 . . . . 5 𝑝𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
45 nfv 1914 . . . . . . 7 𝑞((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ)
46 nfcv 2891 . . . . . . . 8 𝑞
47 nfre1 3254 . . . . . . . 8 𝑞𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
4846, 47nfrexw 3278 . . . . . . 7 𝑞𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
49 simplrl 776 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑝 ∈ ℙ)
50 simplrr 777 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑞 ∈ ℙ)
51 simpr 484 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℙ)
5249, 50, 513jca 1128 . . . . . . . . . . 11 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
5352adantr 480 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
54 simp-4l 782 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 ∈ Even )
55 simpr 484 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))
56 mogoldbblem 47708 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
57 oveq1 7360 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝 + 𝑞) = (𝑦 + 𝑞))
5857eqeq2d 2740 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑛 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑞)))
59 oveq2 7361 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → (𝑦 + 𝑞) = (𝑦 + 𝑥))
6059eqeq2d 2740 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (𝑛 = (𝑦 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑥)))
6158, 60cbvrex2vw 3212 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
6256, 61sylibr 234 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6353, 54, 55, 62syl3anc 1373 . . . . . . . . 9 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6463rexlimdva2 3132 . . . . . . . 8 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6564expr 456 . . . . . . 7 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (𝑞 ∈ ℙ → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6645, 48, 65rexlimd 3236 . . . . . 6 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6766ex 412 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑝 ∈ ℙ → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6843, 44, 67rexlimd 3236 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6942, 68syldc 48 . . 3 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ((𝑛 ∈ Even ∧ 2 < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
7069expd 415 . 2 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ Even → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
711, 70ralrimi 3227 1 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027   + caddc 11031   < clt 11168  cle 11169  cmin 11365  2c2 12201  4c4 12203  6c6 12205  cz 12489  cuz 12753  cprime 16600   Even ceven 47612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-prm 16601  df-even 47614  df-odd 47615
This theorem is referenced by:  sbgoldbmb  47774
  Copyright terms: Public domain W3C validator