Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbb Structured version   Visualization version   GIF version

Theorem mogoldbb 46751
Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbb (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem mogoldbb
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3279 . 2 𝑛𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)
2 eqeq1 2734 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
32rexbidv 3176 . . . . . . 7 (𝑛 = 𝑚 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
432rexbidv 3217 . . . . . 6 (𝑛 = 𝑚 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
54cbvralvw 3232 . . . . 5 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))
6 6nn 12305 . . . . . . . . 9 6 ∈ ℕ
76nnzi 12590 . . . . . . . 8 6 ∈ ℤ
87a1i 11 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ∈ ℤ)
9 evenz 46596 . . . . . . . . 9 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
10 2z 12598 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℤ)
129, 11zaddcld 12674 . . . . . . . 8 (𝑛 ∈ Even → (𝑛 + 2) ∈ ℤ)
1312adantr 479 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ ℤ)
14 4cn 12301 . . . . . . . . . 10 4 ∈ ℂ
15 2cn 12291 . . . . . . . . . 10 2 ∈ ℂ
16 4p2e6 12369 . . . . . . . . . . 11 (4 + 2) = 6
1716eqcomi 2739 . . . . . . . . . 10 6 = (4 + 2)
1814, 15, 17mvrraddi 11481 . . . . . . . . 9 (6 − 2) = 4
19 2p2e4 12351 . . . . . . . . . 10 (2 + 2) = 4
20 2evenALTV 46658 . . . . . . . . . . 11 2 ∈ Even
21 evenltle 46683 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ 2 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2220, 21mp3an2 1447 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2319, 22eqbrtrrid 5183 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 4 ≤ 𝑛)
2418, 23eqbrtrid 5182 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 − 2) ≤ 𝑛)
25 6re 12306 . . . . . . . . . . . 12 6 ∈ ℝ
2625a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 6 ∈ ℝ)
27 2re 12290 . . . . . . . . . . . 12 2 ∈ ℝ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 2 ∈ ℝ)
299zred 12670 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
3026, 28, 293jca 1126 . . . . . . . . . 10 (𝑛 ∈ Even → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
3130adantr 479 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
32 lesubadd 11690 . . . . . . . . 9 ((6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3331, 32syl 17 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3424, 33mpbid 231 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ≤ (𝑛 + 2))
35 eluz2 12832 . . . . . . 7 ((𝑛 + 2) ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ (𝑛 + 2) ∈ ℤ ∧ 6 ≤ (𝑛 + 2)))
368, 13, 34, 35syl3anbrc 1341 . . . . . 6 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ (ℤ‘6))
37 eqeq1 2734 . . . . . . . . 9 (𝑚 = (𝑛 + 2) → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
3837rexbidv 3176 . . . . . . . 8 (𝑚 = (𝑛 + 2) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
39382rexbidv 3217 . . . . . . 7 (𝑚 = (𝑛 + 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4039rspcv 3607 . . . . . 6 ((𝑛 + 2) ∈ (ℤ‘6) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4136, 40syl 17 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
425, 41biimtrid 241 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
43 nfv 1915 . . . . 5 𝑝(𝑛 ∈ Even ∧ 2 < 𝑛)
44 nfre1 3280 . . . . 5 𝑝𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
45 nfv 1915 . . . . . . 7 𝑞((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ)
46 nfcv 2901 . . . . . . . 8 𝑞
47 nfre1 3280 . . . . . . . 8 𝑞𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
4846, 47nfrexw 3308 . . . . . . 7 𝑞𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
49 simplrl 773 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑝 ∈ ℙ)
50 simplrr 774 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑞 ∈ ℙ)
51 simpr 483 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℙ)
5249, 50, 513jca 1126 . . . . . . . . . . 11 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
5352adantr 479 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
54 simp-4l 779 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 ∈ Even )
55 simpr 483 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))
56 mogoldbblem 46686 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
57 oveq1 7418 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝 + 𝑞) = (𝑦 + 𝑞))
5857eqeq2d 2741 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑛 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑞)))
59 oveq2 7419 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → (𝑦 + 𝑞) = (𝑦 + 𝑥))
6059eqeq2d 2741 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (𝑛 = (𝑦 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑥)))
6158, 60cbvrex2vw 3237 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
6256, 61sylibr 233 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6353, 54, 55, 62syl3anc 1369 . . . . . . . . 9 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6463rexlimdva2 3155 . . . . . . . 8 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6564expr 455 . . . . . . 7 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (𝑞 ∈ ℙ → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6645, 48, 65rexlimd 3261 . . . . . 6 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6766ex 411 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑝 ∈ ℙ → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6843, 44, 67rexlimd 3261 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6942, 68syldc 48 . . 3 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ((𝑛 ∈ Even ∧ 2 < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
7069expd 414 . 2 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ Even → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
711, 70ralrimi 3252 1 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wrex 3068   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111   + caddc 11115   < clt 11252  cle 11253  cmin 11448  2c2 12271  4c4 12273  6c6 12275  cz 12562  cuz 12826  cprime 16612   Even ceven 46590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-dvds 16202  df-prm 16613  df-even 46592  df-odd 46593
This theorem is referenced by:  sbgoldbmb  46752
  Copyright terms: Public domain W3C validator