Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbb Structured version   Visualization version   GIF version

Theorem mogoldbb 46067
Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbb (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem mogoldbb
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3266 . 2 𝑛𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)
2 eqeq1 2737 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
32rexbidv 3172 . . . . . . 7 (𝑛 = 𝑚 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
432rexbidv 3210 . . . . . 6 (𝑛 = 𝑚 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
54cbvralvw 3224 . . . . 5 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))
6 6nn 12250 . . . . . . . . 9 6 ∈ ℕ
76nnzi 12535 . . . . . . . 8 6 ∈ ℤ
87a1i 11 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ∈ ℤ)
9 evenz 45912 . . . . . . . . 9 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
10 2z 12543 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℤ)
129, 11zaddcld 12619 . . . . . . . 8 (𝑛 ∈ Even → (𝑛 + 2) ∈ ℤ)
1312adantr 482 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ ℤ)
14 4cn 12246 . . . . . . . . . 10 4 ∈ ℂ
15 2cn 12236 . . . . . . . . . 10 2 ∈ ℂ
16 4p2e6 12314 . . . . . . . . . . 11 (4 + 2) = 6
1716eqcomi 2742 . . . . . . . . . 10 6 = (4 + 2)
1814, 15, 17mvrraddi 11426 . . . . . . . . 9 (6 − 2) = 4
19 2p2e4 12296 . . . . . . . . . 10 (2 + 2) = 4
20 2evenALTV 45974 . . . . . . . . . . 11 2 ∈ Even
21 evenltle 45999 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ 2 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2220, 21mp3an2 1450 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2319, 22eqbrtrrid 5145 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 4 ≤ 𝑛)
2418, 23eqbrtrid 5144 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 − 2) ≤ 𝑛)
25 6re 12251 . . . . . . . . . . . 12 6 ∈ ℝ
2625a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 6 ∈ ℝ)
27 2re 12235 . . . . . . . . . . . 12 2 ∈ ℝ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 2 ∈ ℝ)
299zred 12615 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
3026, 28, 293jca 1129 . . . . . . . . . 10 (𝑛 ∈ Even → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
3130adantr 482 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
32 lesubadd 11635 . . . . . . . . 9 ((6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3331, 32syl 17 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3424, 33mpbid 231 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ≤ (𝑛 + 2))
35 eluz2 12777 . . . . . . 7 ((𝑛 + 2) ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ (𝑛 + 2) ∈ ℤ ∧ 6 ≤ (𝑛 + 2)))
368, 13, 34, 35syl3anbrc 1344 . . . . . 6 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ (ℤ‘6))
37 eqeq1 2737 . . . . . . . . 9 (𝑚 = (𝑛 + 2) → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
3837rexbidv 3172 . . . . . . . 8 (𝑚 = (𝑛 + 2) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
39382rexbidv 3210 . . . . . . 7 (𝑚 = (𝑛 + 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4039rspcv 3579 . . . . . 6 ((𝑛 + 2) ∈ (ℤ‘6) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4136, 40syl 17 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
425, 41biimtrid 241 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
43 nfv 1918 . . . . 5 𝑝(𝑛 ∈ Even ∧ 2 < 𝑛)
44 nfre1 3267 . . . . 5 𝑝𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
45 nfv 1918 . . . . . . 7 𝑞((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ)
46 nfcv 2904 . . . . . . . 8 𝑞
47 nfre1 3267 . . . . . . . 8 𝑞𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
4846, 47nfrexw 3295 . . . . . . 7 𝑞𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
49 simplrl 776 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑝 ∈ ℙ)
50 simplrr 777 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑞 ∈ ℙ)
51 simpr 486 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℙ)
5249, 50, 513jca 1129 . . . . . . . . . . 11 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
5352adantr 482 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
54 simp-4l 782 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 ∈ Even )
55 simpr 486 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))
56 mogoldbblem 46002 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
57 oveq1 7368 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝 + 𝑞) = (𝑦 + 𝑞))
5857eqeq2d 2744 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑛 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑞)))
59 oveq2 7369 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → (𝑦 + 𝑞) = (𝑦 + 𝑥))
6059eqeq2d 2744 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (𝑛 = (𝑦 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑥)))
6158, 60cbvrex2vw 3227 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
6256, 61sylibr 233 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6353, 54, 55, 62syl3anc 1372 . . . . . . . . 9 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6463rexlimdva2 3151 . . . . . . . 8 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6564expr 458 . . . . . . 7 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (𝑞 ∈ ℙ → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6645, 48, 65rexlimd 3248 . . . . . 6 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6766ex 414 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑝 ∈ ℙ → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6843, 44, 67rexlimd 3248 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6942, 68syldc 48 . . 3 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ((𝑛 ∈ Even ∧ 2 < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
7069expd 417 . 2 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ Even → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
711, 70ralrimi 3239 1 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061  wrex 3070   class class class wbr 5109  cfv 6500  (class class class)co 7361  cr 11058   + caddc 11062   < clt 11197  cle 11198  cmin 11393  2c2 12216  4c4 12218  6c6 12220  cz 12507  cuz 12771  cprime 16555   Even ceven 45906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-n0 12422  df-z 12508  df-uz 12772  df-rp 12924  df-seq 13916  df-exp 13977  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-dvds 16145  df-prm 16556  df-even 45908  df-odd 45909
This theorem is referenced by:  sbgoldbmb  46068
  Copyright terms: Public domain W3C validator