Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbb Structured version   Visualization version   GIF version

Theorem mogoldbb 43316
Description: If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbb (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞,𝑟

Proof of Theorem mogoldbb
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfra1 3170 . 2 𝑛𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)
2 eqeq1 2783 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
32rexbidv 3243 . . . . . . 7 (𝑛 = 𝑚 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
432rexbidv 3246 . . . . . 6 (𝑛 = 𝑚 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
54cbvralv 3384 . . . . 5 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))
6 6nn 11532 . . . . . . . . 9 6 ∈ ℕ
76nnzi 11819 . . . . . . . 8 6 ∈ ℤ
87a1i 11 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ∈ ℤ)
9 evenz 43161 . . . . . . . . 9 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
10 2z 11827 . . . . . . . . . 10 2 ∈ ℤ
1110a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℤ)
129, 11zaddcld 11904 . . . . . . . 8 (𝑛 ∈ Even → (𝑛 + 2) ∈ ℤ)
1312adantr 473 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ ℤ)
14 4cn 11526 . . . . . . . . . 10 4 ∈ ℂ
15 2cn 11515 . . . . . . . . . 10 2 ∈ ℂ
16 4p2e6 11600 . . . . . . . . . . 11 (4 + 2) = 6
1716eqcomi 2788 . . . . . . . . . 10 6 = (4 + 2)
1814, 15, 17mvrraddi 10704 . . . . . . . . 9 (6 − 2) = 4
19 2p2e4 11582 . . . . . . . . . 10 (2 + 2) = 4
20 2evenALTV 43223 . . . . . . . . . . 11 2 ∈ Even
21 evenltle 43248 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ 2 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2220, 21mp3an2 1428 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (2 + 2) ≤ 𝑛)
2319, 22syl5eqbrr 4965 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 4 ≤ 𝑛)
2418, 23syl5eqbr 4964 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 − 2) ≤ 𝑛)
25 6re 11533 . . . . . . . . . . . 12 6 ∈ ℝ
2625a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 6 ∈ ℝ)
27 2re 11514 . . . . . . . . . . . 12 2 ∈ ℝ
2827a1i 11 . . . . . . . . . . 11 (𝑛 ∈ Even → 2 ∈ ℝ)
299zred 11900 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
3026, 28, 293jca 1108 . . . . . . . . . 10 (𝑛 ∈ Even → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
3130adantr 473 . . . . . . . . 9 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ))
32 lesubadd 10913 . . . . . . . . 9 ((6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3331, 32syl 17 . . . . . . . 8 ((𝑛 ∈ Even ∧ 2 < 𝑛) → ((6 − 2) ≤ 𝑛 ↔ 6 ≤ (𝑛 + 2)))
3424, 33mpbid 224 . . . . . . 7 ((𝑛 ∈ Even ∧ 2 < 𝑛) → 6 ≤ (𝑛 + 2))
35 eluz2 12064 . . . . . . 7 ((𝑛 + 2) ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ (𝑛 + 2) ∈ ℤ ∧ 6 ≤ (𝑛 + 2)))
368, 13, 34, 35syl3anbrc 1323 . . . . . 6 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑛 + 2) ∈ (ℤ‘6))
37 eqeq1 2783 . . . . . . . . 9 (𝑚 = (𝑛 + 2) → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
3837rexbidv 3243 . . . . . . . 8 (𝑚 = (𝑛 + 2) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
39382rexbidv 3246 . . . . . . 7 (𝑚 = (𝑛 + 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4039rspcv 3532 . . . . . 6 ((𝑛 + 2) ∈ (ℤ‘6) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
4136, 40syl 17 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑚 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
425, 41syl5bi 234 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)))
43 nfv 1873 . . . . 5 𝑝(𝑛 ∈ Even ∧ 2 < 𝑛)
44 nfre1 3252 . . . . 5 𝑝𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
45 nfv 1873 . . . . . . 7 𝑞((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ)
46 nfcv 2933 . . . . . . . 8 𝑞
47 nfre1 3252 . . . . . . . 8 𝑞𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
4846, 47nfrex 3254 . . . . . . 7 𝑞𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)
49 simplrl 764 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑝 ∈ ℙ)
50 simplrr 765 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑞 ∈ ℙ)
51 simpr 477 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → 𝑟 ∈ ℙ)
5249, 50, 513jca 1108 . . . . . . . . . . 11 ((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
5352adantr 473 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ))
54 simp-4l 770 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 ∈ Even )
55 simpr 477 . . . . . . . . . 10 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟))
56 mogoldbblem 43251 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
57 oveq1 6983 . . . . . . . . . . . . 13 (𝑝 = 𝑦 → (𝑝 + 𝑞) = (𝑦 + 𝑞))
5857eqeq2d 2789 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑛 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑞)))
59 oveq2 6984 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → (𝑦 + 𝑞) = (𝑦 + 𝑥))
6059eqeq2d 2789 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (𝑛 = (𝑦 + 𝑞) ↔ 𝑛 = (𝑦 + 𝑥)))
6158, 60cbvrex2v 3394 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑦 ∈ ℙ ∃𝑥 ∈ ℙ 𝑛 = (𝑦 + 𝑥))
6256, 61sylibr 226 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ∧ 𝑛 ∈ Even ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6353, 54, 55, 62syl3anc 1351 . . . . . . . . 9 (((((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) ∧ 𝑟 ∈ ℙ) ∧ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
6463rexlimdva2 3233 . . . . . . . 8 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6564expr 449 . . . . . . 7 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (𝑞 ∈ ℙ → (∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6645, 48, 65rexlimd 3261 . . . . . 6 (((𝑛 ∈ Even ∧ 2 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6766ex 405 . . . . 5 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (𝑝 ∈ ℙ → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
6843, 44, 67rexlimd 3261 . . . 4 ((𝑛 ∈ Even ∧ 2 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ (𝑛 + 2) = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
6942, 68syldc 48 . . 3 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ((𝑛 ∈ Even ∧ 2 < 𝑛) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
7069expd 408 . 2 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ Even → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
711, 70ralrimi 3167 1 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3089  wrex 3090   class class class wbr 4929  cfv 6188  (class class class)co 6976  cr 10334   + caddc 10338   < clt 10474  cle 10475  cmin 10670  2c2 11495  4c4 11497  6c6 11499  cz 11793  cuz 12058  cprime 15871   Even ceven 43155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-dvds 15468  df-prm 15872  df-even 43157  df-odd 43158
This theorem is referenced by:  sbgoldbmb  43317
  Copyright terms: Public domain W3C validator