Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeoALTV Structured version   Visualization version   GIF version

Theorem opeoALTV 47678
Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opeoALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )

Proof of Theorem opeoALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 47625 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 evenz 47624 . . 3 (𝐵 ∈ Even → 𝐵 ∈ ℤ)
3 zaddcl 12515 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2733 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3153 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 47631 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3651 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2733 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = (2 · 𝑗) ↔ 𝐵 = (2 · 𝑗)))
109rexbidv 3153 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗) ↔ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
11 dfeven4 47632 . . . . . 6 Even = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗)}
1210, 11elrab2 3651 . . . . 5 (𝐵 ∈ Even ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
13 zaddcl 12515 . . . . . . . . . . . . 13 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 412 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 731 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 406 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 480 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝑖 + 𝑗) ∈ ℤ)
18 oveq2 7357 . . . . . . . . . . . 12 (𝑛 = (𝑖 + 𝑗) → (2 · 𝑛) = (2 · (𝑖 + 𝑗)))
1918oveq1d 7364 . . . . . . . . . . 11 (𝑛 = (𝑖 + 𝑗) → ((2 · 𝑛) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
2019eqeq2d 2740 . . . . . . . . . 10 (𝑛 = (𝑖 + 𝑗) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
2120adantl 481 . . . . . . . . 9 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) ∧ 𝑛 = (𝑖 + 𝑗)) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
22 oveq12 7358 . . . . . . . . . . . . 13 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
2322ex 412 . . . . . . . . . . . 12 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2423ad3antlr 731 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2524imp 406 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
26 2cnd 12206 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
27 zcn 12476 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2827adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
2926, 28mulcld 11135 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
3029ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
31 1cnd 11110 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 1 ∈ ℂ)
32 2cnd 12206 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 2 ∈ ℂ)
33 zcn 12476 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
34 mulcl 11093 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3532, 33, 34syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℂ)
3630, 31, 35add32d 11344 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = (((2 · 𝑖) + (2 · 𝑗)) + 1))
37 2cnd 12206 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 2 ∈ ℂ)
3827adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∈ ℂ)
3933adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
4037, 38, 39adddid 11139 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4140eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((2 · 𝑖) + (2 · 𝑗)) = (2 · (𝑖 + 𝑗)))
4241oveq1d 7364 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + (2 · 𝑗)) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
4336, 42eqtrd 2764 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4443ex 412 . . . . . . . . . . . . 13 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4544ad3antlr 731 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4645imp 406 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4746adantr 480 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4825, 47eqtrd 2764 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1))
4917, 21, 48rspcedvd 3579 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
5049rexlimdva2 3132 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5150expimpd 453 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5251r19.29an 3133 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5312, 52biimtrid 242 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
548, 53sylbi 217 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5554imp 406 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
56 eqeq1 2733 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5756rexbidv 3153 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
58 dfodd6 47631 . . 3 Odd = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1)}
5957, 58elrab2 3651 . 2 ((𝐴 + 𝐵) ∈ Odd ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
604, 55, 59sylanbrc 583 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  2c2 12183  cz 12471   Even ceven 47618   Odd codd 47619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-even 47620  df-odd 47621
This theorem is referenced by:  omeoALTV  47680  epoo  47697
  Copyright terms: Public domain W3C validator