Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeoALTV Structured version   Visualization version   GIF version

Theorem opeoALTV 46287
Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opeoALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )

Proof of Theorem opeoALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 46234 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 evenz 46233 . . 3 (𝐵 ∈ Even → 𝐵 ∈ ℤ)
3 zaddcl 12598 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 597 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2737 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3179 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 46240 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3685 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2737 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = (2 · 𝑗) ↔ 𝐵 = (2 · 𝑗)))
109rexbidv 3179 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗) ↔ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
11 dfeven4 46241 . . . . . 6 Even = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗)}
1210, 11elrab2 3685 . . . . 5 (𝐵 ∈ Even ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
13 zaddcl 12598 . . . . . . . . . . . . 13 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 414 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 730 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 408 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 482 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝑖 + 𝑗) ∈ ℤ)
18 oveq2 7412 . . . . . . . . . . . 12 (𝑛 = (𝑖 + 𝑗) → (2 · 𝑛) = (2 · (𝑖 + 𝑗)))
1918oveq1d 7419 . . . . . . . . . . 11 (𝑛 = (𝑖 + 𝑗) → ((2 · 𝑛) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
2019eqeq2d 2744 . . . . . . . . . 10 (𝑛 = (𝑖 + 𝑗) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
2120adantl 483 . . . . . . . . 9 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) ∧ 𝑛 = (𝑖 + 𝑗)) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
22 oveq12 7413 . . . . . . . . . . . . 13 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
2322ex 414 . . . . . . . . . . . 12 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2423ad3antlr 730 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2524imp 408 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
26 2cnd 12286 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
27 zcn 12559 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2827adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
2926, 28mulcld 11230 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
3029ancoms 460 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
31 1cnd 11205 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 1 ∈ ℂ)
32 2cnd 12286 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 2 ∈ ℂ)
33 zcn 12559 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
34 mulcl 11190 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3532, 33, 34syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℂ)
3630, 31, 35add32d 11437 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = (((2 · 𝑖) + (2 · 𝑗)) + 1))
37 2cnd 12286 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 2 ∈ ℂ)
3827adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∈ ℂ)
3933adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
4037, 38, 39adddid 11234 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4140eqcomd 2739 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((2 · 𝑖) + (2 · 𝑗)) = (2 · (𝑖 + 𝑗)))
4241oveq1d 7419 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + (2 · 𝑗)) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
4336, 42eqtrd 2773 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4443ex 414 . . . . . . . . . . . . 13 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4544ad3antlr 730 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4645imp 408 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4746adantr 482 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4825, 47eqtrd 2773 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1))
4917, 21, 48rspcedvd 3614 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
5049rexlimdva2 3158 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5150expimpd 455 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5251r19.29an 3159 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5312, 52biimtrid 241 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
548, 53sylbi 216 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5554imp 408 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
56 eqeq1 2737 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5756rexbidv 3179 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
58 dfodd6 46240 . . 3 Odd = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1)}
5957, 58elrab2 3685 . 2 ((𝐴 + 𝐵) ∈ Odd ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
604, 55, 59sylanbrc 584 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3071  (class class class)co 7404  cc 11104  1c1 11107   + caddc 11109   · cmul 11111  2c2 12263  cz 12554   Even ceven 46227   Odd codd 46228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-even 46229  df-odd 46230
This theorem is referenced by:  omeoALTV  46289  epoo  46306
  Copyright terms: Public domain W3C validator