Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeoALTV Structured version   Visualization version   GIF version

Theorem opeoALTV 44128
 Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opeoALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )

Proof of Theorem opeoALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 44075 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 evenz 44074 . . 3 (𝐵 ∈ Even → 𝐵 ∈ ℤ)
3 zaddcl 12019 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 598 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2828 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3289 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 44081 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3669 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2828 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = (2 · 𝑗) ↔ 𝐵 = (2 · 𝑗)))
109rexbidv 3289 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗) ↔ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
11 dfeven4 44082 . . . . . 6 Even = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗)}
1210, 11elrab2 3669 . . . . 5 (𝐵 ∈ Even ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
13 zaddcl 12019 . . . . . . . . . . . . 13 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 416 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 730 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 410 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 484 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝑖 + 𝑗) ∈ ℤ)
18 oveq2 7157 . . . . . . . . . . . 12 (𝑛 = (𝑖 + 𝑗) → (2 · 𝑛) = (2 · (𝑖 + 𝑗)))
1918oveq1d 7164 . . . . . . . . . . 11 (𝑛 = (𝑖 + 𝑗) → ((2 · 𝑛) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
2019eqeq2d 2835 . . . . . . . . . 10 (𝑛 = (𝑖 + 𝑗) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
2120adantl 485 . . . . . . . . 9 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) ∧ 𝑛 = (𝑖 + 𝑗)) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
22 oveq12 7158 . . . . . . . . . . . . 13 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
2322ex 416 . . . . . . . . . . . 12 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2423ad3antlr 730 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2524imp 410 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
26 2cnd 11712 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
27 zcn 11983 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2827adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
2926, 28mulcld 10659 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
3029ancoms 462 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
31 1cnd 10634 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 1 ∈ ℂ)
32 2cnd 11712 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 2 ∈ ℂ)
33 zcn 11983 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
34 mulcl 10619 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3532, 33, 34syl2an 598 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℂ)
3630, 31, 35add32d 10865 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = (((2 · 𝑖) + (2 · 𝑗)) + 1))
37 2cnd 11712 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 2 ∈ ℂ)
3827adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∈ ℂ)
3933adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
4037, 38, 39adddid 10663 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4140eqcomd 2830 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((2 · 𝑖) + (2 · 𝑗)) = (2 · (𝑖 + 𝑗)))
4241oveq1d 7164 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + (2 · 𝑗)) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
4336, 42eqtrd 2859 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4443ex 416 . . . . . . . . . . . . 13 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4544ad3antlr 730 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4645imp 410 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4746adantr 484 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4825, 47eqtrd 2859 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1))
4917, 21, 48rspcedvd 3612 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
5049rexlimdva2 3279 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5150expimpd 457 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5251r19.29an 3280 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5312, 52syl5bi 245 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
548, 53sylbi 220 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5554imp 410 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
56 eqeq1 2828 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5756rexbidv 3289 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
58 dfodd6 44081 . . 3 Odd = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1)}
5957, 58elrab2 3669 . 2 ((𝐴 + 𝐵) ∈ Odd ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
604, 55, 59sylanbrc 586 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∃wrex 3134  (class class class)co 7149  ℂcc 10533  1c1 10536   + caddc 10538   · cmul 10540  2c2 11689  ℤcz 11978   Even ceven 44068   Odd codd 44069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-even 44070  df-odd 44071 This theorem is referenced by:  omeoALTV  44130  epoo  44147
 Copyright terms: Public domain W3C validator