Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeoALTV Structured version   Visualization version   GIF version

Theorem opeoALTV 43856
Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opeoALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )

Proof of Theorem opeoALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 43803 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 evenz 43802 . . 3 (𝐵 ∈ Even → 𝐵 ∈ ℤ)
3 zaddcl 12025 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 597 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2827 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3299 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 43809 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3685 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2827 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = (2 · 𝑗) ↔ 𝐵 = (2 · 𝑗)))
109rexbidv 3299 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗) ↔ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
11 dfeven4 43810 . . . . . 6 Even = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = (2 · 𝑗)}
1210, 11elrab2 3685 . . . . 5 (𝐵 ∈ Even ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)))
13 zaddcl 12025 . . . . . . . . . . . . 13 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 415 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 729 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 409 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 483 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝑖 + 𝑗) ∈ ℤ)
18 oveq2 7166 . . . . . . . . . . . 12 (𝑛 = (𝑖 + 𝑗) → (2 · 𝑛) = (2 · (𝑖 + 𝑗)))
1918oveq1d 7173 . . . . . . . . . . 11 (𝑛 = (𝑖 + 𝑗) → ((2 · 𝑛) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
2019eqeq2d 2834 . . . . . . . . . 10 (𝑛 = (𝑖 + 𝑗) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
2120adantl 484 . . . . . . . . 9 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) ∧ 𝑛 = (𝑖 + 𝑗)) → ((𝐴 + 𝐵) = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1)))
22 oveq12 7167 . . . . . . . . . . . . 13 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
2322ex 415 . . . . . . . . . . . 12 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2423ad3antlr 729 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = (2 · 𝑗) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗))))
2524imp 409 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + (2 · 𝑗)))
26 2cnd 11718 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
27 zcn 11989 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2827adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
2926, 28mulcld 10663 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
3029ancoms 461 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
31 1cnd 10638 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 1 ∈ ℂ)
32 2cnd 11718 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 2 ∈ ℂ)
33 zcn 11989 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
34 mulcl 10623 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3532, 33, 34syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℂ)
3630, 31, 35add32d 10869 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = (((2 · 𝑖) + (2 · 𝑗)) + 1))
37 2cnd 11718 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 2 ∈ ℂ)
3827adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∈ ℂ)
3933adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑗 ∈ ℂ)
4037, 38, 39adddid 10667 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4140eqcomd 2829 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((2 · 𝑖) + (2 · 𝑗)) = (2 · (𝑖 + 𝑗)))
4241oveq1d 7173 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + (2 · 𝑗)) + 1) = ((2 · (𝑖 + 𝑗)) + 1))
4336, 42eqtrd 2858 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4443ex 415 . . . . . . . . . . . . 13 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4544ad3antlr 729 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1)))
4645imp 409 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4746adantr 483 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (((2 · 𝑖) + 1) + (2 · 𝑗)) = ((2 · (𝑖 + 𝑗)) + 1))
4825, 47eqtrd 2858 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → (𝐴 + 𝐵) = ((2 · (𝑖 + 𝑗)) + 1))
4917, 21, 48rspcedvd 3628 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
5049rexlimdva2 3289 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5150expimpd 456 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5251r19.29an 3290 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = (2 · 𝑗)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5312, 52syl5bi 244 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
548, 53sylbi 219 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Even → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5554imp 409 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1))
56 eqeq1 2827 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = ((2 · 𝑛) + 1) ↔ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
5756rexbidv 3299 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
58 dfodd6 43809 . . 3 Odd = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = ((2 · 𝑛) + 1)}
5957, 58elrab2 3685 . 2 ((𝐴 + 𝐵) ∈ Odd ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = ((2 · 𝑛) + 1)))
604, 55, 59sylanbrc 585 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  (class class class)co 7158  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  2c2 11695  cz 11984   Even ceven 43796   Odd codd 43797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-even 43798  df-odd 43799
This theorem is referenced by:  omeoALTV  43858  epoo  43875
  Copyright terms: Public domain W3C validator