Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evensumeven Structured version   Visualization version   GIF version

Theorem evensumeven 43274
Description: If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.)
Assertion
Ref Expression
evensumeven ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even ))

Proof of Theorem evensumeven
StepHypRef Expression
1 epee 43272 . . . 4 ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even )
21expcom 406 . . 3 (𝐵 ∈ Even → (𝐴 ∈ Even → (𝐴 + 𝐵) ∈ Even ))
32adantl 474 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even → (𝐴 + 𝐵) ∈ Even ))
4 zcn 11796 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
5 evenz 43197 . . . . . . 7 (𝐵 ∈ Even → 𝐵 ∈ ℤ)
65zcnd 11899 . . . . . 6 (𝐵 ∈ Even → 𝐵 ∈ ℂ)
7 pncan 10690 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
84, 6, 7syl2an 587 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
98adantr 473 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
10 simpr 477 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → 𝐵 ∈ Even )
1110anim1i 606 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → (𝐵 ∈ Even ∧ (𝐴 + 𝐵) ∈ Even ))
1211ancomd 454 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → ((𝐴 + 𝐵) ∈ Even ∧ 𝐵 ∈ Even ))
13 emee 43273 . . . . 5 (((𝐴 + 𝐵) ∈ Even ∧ 𝐵 ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) ∈ Even )
1412, 13syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) ∈ Even )
159, 14eqeltrrd 2860 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → 𝐴 ∈ Even )
1615ex 405 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → ((𝐴 + 𝐵) ∈ Even → 𝐴 ∈ Even ))
173, 16impbid 204 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  (class class class)co 6974  cc 10331   + caddc 10336  cmin 10668  cz 11791   Even ceven 43191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-n0 11706  df-z 11792  df-even 43193  df-odd 43194
This theorem is referenced by:  sbgoldbaltlem1  43346
  Copyright terms: Public domain W3C validator