Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evensumeven Structured version   Visualization version   GIF version

Theorem evensumeven 47817
Description: If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.)
Assertion
Ref Expression
evensumeven ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even ))

Proof of Theorem evensumeven
StepHypRef Expression
1 epee 47815 . . . 4 ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even )
21expcom 413 . . 3 (𝐵 ∈ Even → (𝐴 ∈ Even → (𝐴 + 𝐵) ∈ Even ))
32adantl 481 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even → (𝐴 + 𝐵) ∈ Even ))
4 zcn 12473 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
5 evenz 47740 . . . . . . 7 (𝐵 ∈ Even → 𝐵 ∈ ℤ)
65zcnd 12578 . . . . . 6 (𝐵 ∈ Even → 𝐵 ∈ ℂ)
7 pncan 11366 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
84, 6, 7syl2an 596 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
98adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
10 simpr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → 𝐵 ∈ Even )
1110anim1i 615 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → (𝐵 ∈ Even ∧ (𝐴 + 𝐵) ∈ Even ))
1211ancomd 461 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → ((𝐴 + 𝐵) ∈ Even ∧ 𝐵 ∈ Even ))
13 emee 47816 . . . . 5 (((𝐴 + 𝐵) ∈ Even ∧ 𝐵 ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) ∈ Even )
1412, 13syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → ((𝐴 + 𝐵) − 𝐵) ∈ Even )
159, 14eqeltrrd 2832 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) ∧ (𝐴 + 𝐵) ∈ Even ) → 𝐴 ∈ Even )
1615ex 412 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → ((𝐴 + 𝐵) ∈ Even → 𝐴 ∈ Even ))
173, 16impbid 212 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009  cmin 11344  cz 12468   Even ceven 47734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-even 47736  df-odd 47737
This theorem is referenced by:  sbgoldbaltlem1  47889
  Copyright terms: Public domain W3C validator