Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgoldbeven3prm Structured version   Visualization version   GIF version

Theorem sgoldbeven3prm 45246
Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sgoldbeven3prm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Distinct variable group:   𝑛,𝑁,𝑝,𝑞,𝑟

Proof of Theorem sgoldbeven3prm
StepHypRef Expression
1 sbgoldbb 45245 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2 2p2e4 12117 . . . . 5 (2 + 2) = 4
3 evenz 45093 . . . . . . . 8 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
43zred 12435 . . . . . . 7 (𝑁 ∈ Even → 𝑁 ∈ ℝ)
5 4lt6 12164 . . . . . . . 8 4 < 6
6 4re 12066 . . . . . . . . 9 4 ∈ ℝ
7 6re 12072 . . . . . . . . 9 6 ∈ ℝ
8 ltletr 11076 . . . . . . . . 9 ((4 ∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
96, 7, 8mp3an12 1450 . . . . . . . 8 (𝑁 ∈ ℝ → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
105, 9mpani 693 . . . . . . 7 (𝑁 ∈ ℝ → (6 ≤ 𝑁 → 4 < 𝑁))
114, 10syl 17 . . . . . 6 (𝑁 ∈ Even → (6 ≤ 𝑁 → 4 < 𝑁))
1211imp 407 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 4 < 𝑁)
132, 12eqbrtrid 5110 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (2 + 2) < 𝑁)
14 2re 12056 . . . . . 6 2 ∈ ℝ
1514a1i 11 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 ∈ ℝ)
164adantr 481 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 𝑁 ∈ ℝ)
1715, 15, 16ltaddsub2d 11585 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ((2 + 2) < 𝑁 ↔ 2 < (𝑁 − 2)))
1813, 17mpbid 231 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 < (𝑁 − 2))
19 2evenALTV 45155 . . . . . 6 2 ∈ Even
20 emee 45169 . . . . . 6 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 − 2) ∈ Even )
2119, 20mpan2 688 . . . . 5 (𝑁 ∈ Even → (𝑁 − 2) ∈ Even )
22 breq2 5079 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (2 < 𝑛 ↔ 2 < (𝑁 − 2)))
23 eqeq1 2743 . . . . . . . . 9 (𝑛 = (𝑁 − 2) → (𝑛 = (𝑝 + 𝑞) ↔ (𝑁 − 2) = (𝑝 + 𝑞)))
24232rexbidv 3230 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)))
2522, 24imbi12d 345 . . . . . . 7 (𝑛 = (𝑁 − 2) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) ↔ (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
2625rspcv 3558 . . . . . 6 ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
27 2prm 16406 . . . . . . . . . . . 12 2 ∈ ℙ
2827a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 2 ∈ ℙ)
29 oveq2 7292 . . . . . . . . . . . . 13 (𝑟 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 2))
3029eqeq2d 2750 . . . . . . . . . . . 12 (𝑟 = 2 → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
3130adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) ∧ 𝑟 = 2) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
323zcnd 12436 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
33 2cnd 12060 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 2 ∈ ℂ)
34 npcan 11239 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
3534eqcomd 2745 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
3632, 33, 35syl2anc 584 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 = ((𝑁 − 2) + 2))
3736adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑁 − 2) + 2))
38 simpr 485 . . . . . . . . . . . . 13 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → (𝑁 − 2) = (𝑝 + 𝑞))
3938oveq1d 7299 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ((𝑁 − 2) + 2) = ((𝑝 + 𝑞) + 2))
4037, 39eqtrd 2779 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑝 + 𝑞) + 2))
4128, 31, 40rspcedvd 3564 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))
4241ex 413 . . . . . . . . 9 (𝑁 ∈ Even → ((𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4342reximdv 3203 . . . . . . . 8 (𝑁 ∈ Even → (∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4443reximdv 3203 . . . . . . 7 (𝑁 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4544imim2d 57 . . . . . 6 (𝑁 ∈ Even → ((2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4626, 45syl9r 78 . . . . 5 (𝑁 ∈ Even → ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))))
4721, 46mpd 15 . . . 4 (𝑁 ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4847adantr 481 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4918, 48mpid 44 . 2 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
501, 49syl5com 31 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wral 3065  wrex 3066   class class class wbr 5075  (class class class)co 7284  cc 10878  cr 10879   + caddc 10883   < clt 11018  cle 11019  cmin 11214  2c2 12037  4c4 12039  6c6 12041  cprime 16385   Even ceven 45087   GoldbachEven cgbe 45208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-fz 13249  df-seq 13731  df-exp 13792  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-dvds 15973  df-prm 16386  df-even 45089  df-odd 45090  df-gbe 45211
This theorem is referenced by:  sbgoldbm  45247
  Copyright terms: Public domain W3C validator