Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgoldbeven3prm Structured version   Visualization version   GIF version

Theorem sgoldbeven3prm 47182
Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sgoldbeven3prm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Distinct variable group:   𝑛,𝑁,𝑝,𝑞,𝑟

Proof of Theorem sgoldbeven3prm
StepHypRef Expression
1 sbgoldbb 47181 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2 2p2e4 12372 . . . . 5 (2 + 2) = 4
3 evenz 47029 . . . . . . . 8 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
43zred 12691 . . . . . . 7 (𝑁 ∈ Even → 𝑁 ∈ ℝ)
5 4lt6 12419 . . . . . . . 8 4 < 6
6 4re 12321 . . . . . . . . 9 4 ∈ ℝ
7 6re 12327 . . . . . . . . 9 6 ∈ ℝ
8 ltletr 11331 . . . . . . . . 9 ((4 ∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
96, 7, 8mp3an12 1447 . . . . . . . 8 (𝑁 ∈ ℝ → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
105, 9mpani 694 . . . . . . 7 (𝑁 ∈ ℝ → (6 ≤ 𝑁 → 4 < 𝑁))
114, 10syl 17 . . . . . 6 (𝑁 ∈ Even → (6 ≤ 𝑁 → 4 < 𝑁))
1211imp 405 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 4 < 𝑁)
132, 12eqbrtrid 5179 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (2 + 2) < 𝑁)
14 2re 12311 . . . . . 6 2 ∈ ℝ
1514a1i 11 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 ∈ ℝ)
164adantr 479 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 𝑁 ∈ ℝ)
1715, 15, 16ltaddsub2d 11840 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ((2 + 2) < 𝑁 ↔ 2 < (𝑁 − 2)))
1813, 17mpbid 231 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 < (𝑁 − 2))
19 2evenALTV 47091 . . . . . 6 2 ∈ Even
20 emee 47105 . . . . . 6 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 − 2) ∈ Even )
2119, 20mpan2 689 . . . . 5 (𝑁 ∈ Even → (𝑁 − 2) ∈ Even )
22 breq2 5148 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (2 < 𝑛 ↔ 2 < (𝑁 − 2)))
23 eqeq1 2729 . . . . . . . . 9 (𝑛 = (𝑁 − 2) → (𝑛 = (𝑝 + 𝑞) ↔ (𝑁 − 2) = (𝑝 + 𝑞)))
24232rexbidv 3210 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)))
2522, 24imbi12d 343 . . . . . . 7 (𝑛 = (𝑁 − 2) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) ↔ (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
2625rspcv 3599 . . . . . 6 ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
27 2prm 16657 . . . . . . . . . . . 12 2 ∈ ℙ
2827a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 2 ∈ ℙ)
29 oveq2 7421 . . . . . . . . . . . . 13 (𝑟 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 2))
3029eqeq2d 2736 . . . . . . . . . . . 12 (𝑟 = 2 → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
3130adantl 480 . . . . . . . . . . 11 (((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) ∧ 𝑟 = 2) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
323zcnd 12692 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
33 2cnd 12315 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 2 ∈ ℂ)
34 npcan 11494 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
3534eqcomd 2731 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
3632, 33, 35syl2anc 582 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 = ((𝑁 − 2) + 2))
3736adantr 479 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑁 − 2) + 2))
38 simpr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → (𝑁 − 2) = (𝑝 + 𝑞))
3938oveq1d 7428 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ((𝑁 − 2) + 2) = ((𝑝 + 𝑞) + 2))
4037, 39eqtrd 2765 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑝 + 𝑞) + 2))
4128, 31, 40rspcedvd 3605 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))
4241ex 411 . . . . . . . . 9 (𝑁 ∈ Even → ((𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4342reximdv 3160 . . . . . . . 8 (𝑁 ∈ Even → (∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4443reximdv 3160 . . . . . . 7 (𝑁 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4544imim2d 57 . . . . . 6 (𝑁 ∈ Even → ((2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4626, 45syl9r 78 . . . . 5 (𝑁 ∈ Even → ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))))
4721, 46mpd 15 . . . 4 (𝑁 ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4847adantr 479 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4918, 48mpid 44 . 2 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
501, 49syl5com 31 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060   class class class wbr 5144  (class class class)co 7413  cc 11131  cr 11132   + caddc 11136   < clt 11273  cle 11274  cmin 11469  2c2 12292  4c4 12294  6c6 12296  cprime 16636   Even ceven 47023   GoldbachEven cgbe 47144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-fz 13512  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-dvds 16226  df-prm 16637  df-even 47025  df-odd 47026  df-gbe 47147
This theorem is referenced by:  sbgoldbm  47183
  Copyright terms: Public domain W3C validator