Proof of Theorem sgoldbeven3prm
Step | Hyp | Ref
| Expression |
1 | | sbgoldbb 45245 |
. 2
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
∀𝑛 ∈ Even (2
< 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) |
2 | | 2p2e4 12117 |
. . . . 5
⊢ (2 + 2) =
4 |
3 | | evenz 45093 |
. . . . . . . 8
⊢ (𝑁 ∈ Even → 𝑁 ∈
ℤ) |
4 | 3 | zred 12435 |
. . . . . . 7
⊢ (𝑁 ∈ Even → 𝑁 ∈
ℝ) |
5 | | 4lt6 12164 |
. . . . . . . 8
⊢ 4 <
6 |
6 | | 4re 12066 |
. . . . . . . . 9
⊢ 4 ∈
ℝ |
7 | | 6re 12072 |
. . . . . . . . 9
⊢ 6 ∈
ℝ |
8 | | ltletr 11076 |
. . . . . . . . 9
⊢ ((4
∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 < 6 ∧ 6
≤ 𝑁) → 4 < 𝑁)) |
9 | 6, 7, 8 | mp3an12 1450 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → ((4 <
6 ∧ 6 ≤ 𝑁) → 4
< 𝑁)) |
10 | 5, 9 | mpani 693 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ → (6 ≤
𝑁 → 4 < 𝑁)) |
11 | 4, 10 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ Even → (6 ≤
𝑁 → 4 < 𝑁)) |
12 | 11 | imp 407 |
. . . . 5
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 4 < 𝑁) |
13 | 2, 12 | eqbrtrid 5110 |
. . . 4
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (2 + 2) < 𝑁) |
14 | | 2re 12056 |
. . . . . 6
⊢ 2 ∈
ℝ |
15 | 14 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 ∈
ℝ) |
16 | 4 | adantr 481 |
. . . . 5
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 𝑁 ∈ ℝ) |
17 | 15, 15, 16 | ltaddsub2d 11585 |
. . . 4
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ((2 + 2) < 𝑁 ↔ 2 < (𝑁 − 2))) |
18 | 13, 17 | mpbid 231 |
. . 3
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 < (𝑁 − 2)) |
19 | | 2evenALTV 45155 |
. . . . . 6
⊢ 2 ∈
Even |
20 | | emee 45169 |
. . . . . 6
⊢ ((𝑁 ∈ Even ∧ 2 ∈ Even
) → (𝑁 − 2)
∈ Even ) |
21 | 19, 20 | mpan2 688 |
. . . . 5
⊢ (𝑁 ∈ Even → (𝑁 − 2) ∈ Even
) |
22 | | breq2 5079 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 − 2) → (2 < 𝑛 ↔ 2 < (𝑁 − 2))) |
23 | | eqeq1 2743 |
. . . . . . . . 9
⊢ (𝑛 = (𝑁 − 2) → (𝑛 = (𝑝 + 𝑞) ↔ (𝑁 − 2) = (𝑝 + 𝑞))) |
24 | 23 | 2rexbidv 3230 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 − 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))) |
25 | 22, 24 | imbi12d 345 |
. . . . . . 7
⊢ (𝑛 = (𝑁 − 2) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) ↔ (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)))) |
26 | 25 | rspcv 3558 |
. . . . . 6
⊢ ((𝑁 − 2) ∈ Even →
(∀𝑛 ∈ Even (2
< 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)))) |
27 | | 2prm 16406 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℙ |
28 | 27 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 2 ∈ ℙ) |
29 | | oveq2 7292 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 2)) |
30 | 29 | eqeq2d 2750 |
. . . . . . . . . . . 12
⊢ (𝑟 = 2 → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2))) |
31 | 30 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) ∧ 𝑟 = 2) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2))) |
32 | 3 | zcnd 12436 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ Even → 𝑁 ∈
ℂ) |
33 | | 2cnd 12060 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ Even → 2 ∈
ℂ) |
34 | | npcan 11239 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ) → ((𝑁 −
2) + 2) = 𝑁) |
35 | 34 | eqcomd 2745 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ) → 𝑁 = ((𝑁 − 2) +
2)) |
36 | 32, 33, 35 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ Even → 𝑁 = ((𝑁 − 2) + 2)) |
37 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑁 − 2) + 2)) |
38 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → (𝑁 − 2) = (𝑝 + 𝑞)) |
39 | 38 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ((𝑁 − 2) + 2) = ((𝑝 + 𝑞) + 2)) |
40 | 37, 39 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑝 + 𝑞) + 2)) |
41 | 28, 31, 40 | rspcedvd 3564 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) |
42 | 41 | ex 413 |
. . . . . . . . 9
⊢ (𝑁 ∈ Even → ((𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) |
43 | 42 | reximdv 3203 |
. . . . . . . 8
⊢ (𝑁 ∈ Even →
(∃𝑞 ∈ ℙ
(𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) |
44 | 43 | reximdv 3203 |
. . . . . . 7
⊢ (𝑁 ∈ Even →
(∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
(𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) |
45 | 44 | imim2d 57 |
. . . . . 6
⊢ (𝑁 ∈ Even → ((2 <
(𝑁 − 2) →
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
(𝑁 − 2) = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))) |
46 | 26, 45 | syl9r 78 |
. . . . 5
⊢ (𝑁 ∈ Even → ((𝑁 − 2) ∈ Even →
(∀𝑛 ∈ Even (2
< 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))) |
47 | 21, 46 | mpd 15 |
. . . 4
⊢ (𝑁 ∈ Even →
(∀𝑛 ∈ Even (2
< 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))) |
48 | 47 | adantr 481 |
. . 3
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))) |
49 | 18, 48 | mpid 44 |
. 2
⊢ ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) |
50 | 1, 49 | syl5com 31 |
1
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
((𝑁 ∈ Even ∧ 6
≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) |