Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgoldbeven3prm Structured version   Visualization version   GIF version

Theorem sgoldbeven3prm 47708
Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sgoldbeven3prm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Distinct variable group:   𝑛,𝑁,𝑝,𝑞,𝑟

Proof of Theorem sgoldbeven3prm
StepHypRef Expression
1 sbgoldbb 47707 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2 2p2e4 12399 . . . . 5 (2 + 2) = 4
3 evenz 47555 . . . . . . . 8 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
43zred 12720 . . . . . . 7 (𝑁 ∈ Even → 𝑁 ∈ ℝ)
5 4lt6 12446 . . . . . . . 8 4 < 6
6 4re 12348 . . . . . . . . 9 4 ∈ ℝ
7 6re 12354 . . . . . . . . 9 6 ∈ ℝ
8 ltletr 11351 . . . . . . . . 9 ((4 ∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
96, 7, 8mp3an12 1450 . . . . . . . 8 (𝑁 ∈ ℝ → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
105, 9mpani 696 . . . . . . 7 (𝑁 ∈ ℝ → (6 ≤ 𝑁 → 4 < 𝑁))
114, 10syl 17 . . . . . 6 (𝑁 ∈ Even → (6 ≤ 𝑁 → 4 < 𝑁))
1211imp 406 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 4 < 𝑁)
132, 12eqbrtrid 5183 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (2 + 2) < 𝑁)
14 2re 12338 . . . . . 6 2 ∈ ℝ
1514a1i 11 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 ∈ ℝ)
164adantr 480 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 𝑁 ∈ ℝ)
1715, 15, 16ltaddsub2d 11862 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ((2 + 2) < 𝑁 ↔ 2 < (𝑁 − 2)))
1813, 17mpbid 232 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 < (𝑁 − 2))
19 2evenALTV 47617 . . . . . 6 2 ∈ Even
20 emee 47631 . . . . . 6 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 − 2) ∈ Even )
2119, 20mpan2 691 . . . . 5 (𝑁 ∈ Even → (𝑁 − 2) ∈ Even )
22 breq2 5152 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (2 < 𝑛 ↔ 2 < (𝑁 − 2)))
23 eqeq1 2739 . . . . . . . . 9 (𝑛 = (𝑁 − 2) → (𝑛 = (𝑝 + 𝑞) ↔ (𝑁 − 2) = (𝑝 + 𝑞)))
24232rexbidv 3220 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)))
2522, 24imbi12d 344 . . . . . . 7 (𝑛 = (𝑁 − 2) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) ↔ (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
2625rspcv 3618 . . . . . 6 ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
27 2prm 16726 . . . . . . . . . . . 12 2 ∈ ℙ
2827a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 2 ∈ ℙ)
29 oveq2 7439 . . . . . . . . . . . . 13 (𝑟 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 2))
3029eqeq2d 2746 . . . . . . . . . . . 12 (𝑟 = 2 → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
3130adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) ∧ 𝑟 = 2) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
323zcnd 12721 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
33 2cnd 12342 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 2 ∈ ℂ)
34 npcan 11515 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
3534eqcomd 2741 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
3632, 33, 35syl2anc 584 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 = ((𝑁 − 2) + 2))
3736adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑁 − 2) + 2))
38 simpr 484 . . . . . . . . . . . . 13 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → (𝑁 − 2) = (𝑝 + 𝑞))
3938oveq1d 7446 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ((𝑁 − 2) + 2) = ((𝑝 + 𝑞) + 2))
4037, 39eqtrd 2775 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑝 + 𝑞) + 2))
4128, 31, 40rspcedvd 3624 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))
4241ex 412 . . . . . . . . 9 (𝑁 ∈ Even → ((𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4342reximdv 3168 . . . . . . . 8 (𝑁 ∈ Even → (∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4443reximdv 3168 . . . . . . 7 (𝑁 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4544imim2d 57 . . . . . 6 (𝑁 ∈ Even → ((2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4626, 45syl9r 78 . . . . 5 (𝑁 ∈ Even → ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))))
4721, 46mpd 15 . . . 4 (𝑁 ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4847adantr 480 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4918, 48mpid 44 . 2 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
501, 49syl5com 31 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152   + caddc 11156   < clt 11293  cle 11294  cmin 11490  2c2 12319  4c4 12321  6c6 12323  cprime 16705   Even ceven 47549   GoldbachEven cgbe 47670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-prm 16706  df-even 47551  df-odd 47552  df-gbe 47673
This theorem is referenced by:  sbgoldbm  47709
  Copyright terms: Public domain W3C validator