Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgoldbeven3prm Structured version   Visualization version   GIF version

Theorem sgoldbeven3prm 45653
Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sgoldbeven3prm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Distinct variable group:   𝑛,𝑁,𝑝,𝑞,𝑟

Proof of Theorem sgoldbeven3prm
StepHypRef Expression
1 sbgoldbb 45652 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2 2p2e4 12213 . . . . 5 (2 + 2) = 4
3 evenz 45500 . . . . . . . 8 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
43zred 12531 . . . . . . 7 (𝑁 ∈ Even → 𝑁 ∈ ℝ)
5 4lt6 12260 . . . . . . . 8 4 < 6
6 4re 12162 . . . . . . . . 9 4 ∈ ℝ
7 6re 12168 . . . . . . . . 9 6 ∈ ℝ
8 ltletr 11172 . . . . . . . . 9 ((4 ∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
96, 7, 8mp3an12 1451 . . . . . . . 8 (𝑁 ∈ ℝ → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
105, 9mpani 694 . . . . . . 7 (𝑁 ∈ ℝ → (6 ≤ 𝑁 → 4 < 𝑁))
114, 10syl 17 . . . . . 6 (𝑁 ∈ Even → (6 ≤ 𝑁 → 4 < 𝑁))
1211imp 408 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 4 < 𝑁)
132, 12eqbrtrid 5131 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (2 + 2) < 𝑁)
14 2re 12152 . . . . . 6 2 ∈ ℝ
1514a1i 11 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 ∈ ℝ)
164adantr 482 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 𝑁 ∈ ℝ)
1715, 15, 16ltaddsub2d 11681 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ((2 + 2) < 𝑁 ↔ 2 < (𝑁 − 2)))
1813, 17mpbid 231 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 < (𝑁 − 2))
19 2evenALTV 45562 . . . . . 6 2 ∈ Even
20 emee 45576 . . . . . 6 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 − 2) ∈ Even )
2119, 20mpan2 689 . . . . 5 (𝑁 ∈ Even → (𝑁 − 2) ∈ Even )
22 breq2 5100 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (2 < 𝑛 ↔ 2 < (𝑁 − 2)))
23 eqeq1 2741 . . . . . . . . 9 (𝑛 = (𝑁 − 2) → (𝑛 = (𝑝 + 𝑞) ↔ (𝑁 − 2) = (𝑝 + 𝑞)))
24232rexbidv 3210 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)))
2522, 24imbi12d 345 . . . . . . 7 (𝑛 = (𝑁 − 2) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) ↔ (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
2625rspcv 3569 . . . . . 6 ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
27 2prm 16494 . . . . . . . . . . . 12 2 ∈ ℙ
2827a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 2 ∈ ℙ)
29 oveq2 7349 . . . . . . . . . . . . 13 (𝑟 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 2))
3029eqeq2d 2748 . . . . . . . . . . . 12 (𝑟 = 2 → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
3130adantl 483 . . . . . . . . . . 11 (((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) ∧ 𝑟 = 2) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
323zcnd 12532 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
33 2cnd 12156 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 2 ∈ ℂ)
34 npcan 11335 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
3534eqcomd 2743 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
3632, 33, 35syl2anc 585 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 = ((𝑁 − 2) + 2))
3736adantr 482 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑁 − 2) + 2))
38 simpr 486 . . . . . . . . . . . . 13 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → (𝑁 − 2) = (𝑝 + 𝑞))
3938oveq1d 7356 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ((𝑁 − 2) + 2) = ((𝑝 + 𝑞) + 2))
4037, 39eqtrd 2777 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑝 + 𝑞) + 2))
4128, 31, 40rspcedvd 3575 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))
4241ex 414 . . . . . . . . 9 (𝑁 ∈ Even → ((𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4342reximdv 3164 . . . . . . . 8 (𝑁 ∈ Even → (∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4443reximdv 3164 . . . . . . 7 (𝑁 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4544imim2d 57 . . . . . 6 (𝑁 ∈ Even → ((2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4626, 45syl9r 78 . . . . 5 (𝑁 ∈ Even → ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))))
4721, 46mpd 15 . . . 4 (𝑁 ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4847adantr 482 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4918, 48mpid 44 . 2 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
501, 49syl5com 31 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  wrex 3071   class class class wbr 5096  (class class class)co 7341  cc 10974  cr 10975   + caddc 10979   < clt 11114  cle 11115  cmin 11310  2c2 12133  4c4 12135  6c6 12137  cprime 16473   Even ceven 45494   GoldbachEven cgbe 45615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-sup 9303  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-n0 12339  df-z 12425  df-uz 12688  df-rp 12836  df-fz 13345  df-seq 13827  df-exp 13888  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-dvds 16063  df-prm 16474  df-even 45496  df-odd 45497  df-gbe 45618
This theorem is referenced by:  sbgoldbm  45654
  Copyright terms: Public domain W3C validator