Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfo Structured version   Visualization version   GIF version

Theorem uspgrsprfo 45198
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprfo (𝑉𝑊𝐹:𝐺onto𝑃)
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑒,𝑊,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣   𝑊,𝑞
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem uspgrsprfo
Dummy variables 𝑎 𝑏 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . . 4 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . . 4 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf 45196 . . 3 𝐹:𝐺𝑃
54a1i 11 . 2 (𝑉𝑊𝐹:𝐺𝑃)
61eleq2i 2830 . . . . . . 7 (𝑎𝑃𝑎 ∈ 𝒫 (Pairs‘𝑉))
7 velpw 4535 . . . . . . 7 (𝑎 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑎 ⊆ (Pairs‘𝑉))
86, 7bitri 274 . . . . . 6 (𝑎𝑃𝑎 ⊆ (Pairs‘𝑉))
9 eqidd 2739 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑉 = 𝑉)
10 vex 3426 . . . . . . . . . . . . . . 15 𝑎 ∈ V
1110a1i 11 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ∈ V)
12 f1oi 6737 . . . . . . . . . . . . . . . . 17 ( I ↾ 𝑎):𝑎1-1-onto𝑎
1312a1i 11 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):𝑎1-1-onto𝑎)
14 dmresi 5950 . . . . . . . . . . . . . . . . 17 dom ( I ↾ 𝑎) = 𝑎
15 f1oeq2 6689 . . . . . . . . . . . . . . . . 17 (dom ( I ↾ 𝑎) = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎))
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎)
1713, 16sylibr 233 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎)
18 sprvalpwle2 44829 . . . . . . . . . . . . . . . . 17 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
1918sseq2d 3949 . . . . . . . . . . . . . . . 16 (𝑉𝑊 → (𝑎 ⊆ (Pairs‘𝑉) ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2019biimpac 478 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
2117, 20jca 511 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
22 f1oeq3 6690 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓 ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎))
23 sseq1 3942 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2422, 23anbi12d 630 . . . . . . . . . . . . . 14 (𝑓 = 𝑎 → ((( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) ↔ (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
2511, 21, 24spcedv 3527 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
26 resiexg 7735 . . . . . . . . . . . . . . 15 (𝑎 ∈ V → ( I ↾ 𝑎) ∈ V)
2710, 26ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ 𝑎) ∈ V
2827f11o 7763 . . . . . . . . . . . . 13 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2925, 28sylibr 233 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
3010a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ⊆ (Pairs‘𝑉) → 𝑎 ∈ V)
3130resiexd 7074 . . . . . . . . . . . . . 14 (𝑎 ⊆ (Pairs‘𝑉) → ( I ↾ 𝑎) ∈ V)
3231anim1ci 615 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V))
33 isuspgrop 27434 . . . . . . . . . . . . 13 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3432, 33syl 17 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3529, 34mpbird 256 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph)
36 fveqeq2 6765 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Vtx‘𝑞) = 𝑉 ↔ (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉))
37 fveqeq2 6765 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Edg‘𝑞) = 𝑎 ↔ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
3836, 37anbi12d 630 . . . . . . . . . . . 12 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
3938adantl 481 . . . . . . . . . . 11 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩) → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
40 opvtxfv 27277 . . . . . . . . . . . . . 14 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
4131, 40sylan2 592 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
42 edgopval 27324 . . . . . . . . . . . . . . 15 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
4331, 42sylan2 592 . . . . . . . . . . . . . 14 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
44 rnresi 5972 . . . . . . . . . . . . . 14 ran ( I ↾ 𝑎) = 𝑎
4543, 44eqtrdi 2795 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)
4641, 45jca 511 . . . . . . . . . . . 12 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
4746ancoms 458 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
4835, 39, 47rspcedvd 3555 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))
499, 48jca 511 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
502eleq2i 2830 . . . . . . . . . 10 (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
5130anim1ci 615 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊𝑎 ∈ V))
52 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (𝑣 = 𝑉𝑉 = 𝑉))
5352adantr 480 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (𝑣 = 𝑉𝑉 = 𝑉))
54 eqeq2 2750 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((Vtx‘𝑞) = 𝑣 ↔ (Vtx‘𝑞) = 𝑉))
55 eqeq2 2750 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → ((Edg‘𝑞) = 𝑒 ↔ (Edg‘𝑞) = 𝑎))
5654, 55bi2anan9 635 . . . . . . . . . . . . . 14 ((𝑣 = 𝑉𝑒 = 𝑎) → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
5756rexbidv 3225 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
5853, 57anbi12d 630 . . . . . . . . . . . 12 ((𝑣 = 𝑉𝑒 = 𝑎) → ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
5958opelopabga 5439 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6051, 59syl 17 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6150, 60syl5bb 282 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6249, 61mpbird 256 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, 𝑎⟩ ∈ 𝐺)
63 fveq2 6756 . . . . . . . . . 10 (𝑏 = ⟨𝑉, 𝑎⟩ → (2nd𝑏) = (2nd ‘⟨𝑉, 𝑎⟩))
6463eqeq2d 2749 . . . . . . . . 9 (𝑏 = ⟨𝑉, 𝑎⟩ → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
6564adantl 481 . . . . . . . 8 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑏 = ⟨𝑉, 𝑎⟩) → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
66 op2ndg 7817 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
6766elvd 3429 . . . . . . . . . 10 (𝑉𝑊 → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
6867adantl 481 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
6968eqcomd 2744 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩))
7062, 65, 69rspcedvd 3555 . . . . . . 7 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
7170ex 412 . . . . . 6 (𝑎 ⊆ (Pairs‘𝑉) → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
728, 71sylbi 216 . . . . 5 (𝑎𝑃 → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
7372impcom 407 . . . 4 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
741, 2, 3uspgrsprfv 45195 . . . . . . 7 (𝑏𝐺 → (𝐹𝑏) = (2nd𝑏))
7574adantl 481 . . . . . 6 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝐹𝑏) = (2nd𝑏))
7675eqeq2d 2749 . . . . 5 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (2nd𝑏)))
7776rexbidva 3224 . . . 4 ((𝑉𝑊𝑎𝑃) → (∃𝑏𝐺 𝑎 = (𝐹𝑏) ↔ ∃𝑏𝐺 𝑎 = (2nd𝑏)))
7873, 77mpbird 256 . . 3 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (𝐹𝑏))
7978ralrimiva 3107 . 2 (𝑉𝑊 → ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏))
80 dffo3 6960 . 2 (𝐹:𝐺onto𝑃 ↔ (𝐹:𝐺𝑃 ∧ ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏)))
815, 79, 80sylanbrc 582 1 (𝑉𝑊𝐹:𝐺onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  cop 4564   class class class wbr 5070  {copab 5132  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  2nd c2nd 7803  cle 10941  2c2 11958  chash 13972  Vtxcvtx 27269  Edgcedg 27320  USPGraphcuspgr 27421  Pairscspr 44817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-vtx 27271  df-iedg 27272  df-edg 27321  df-upgr 27355  df-uspgr 27423  df-spr 44818
This theorem is referenced by:  uspgrsprf1o  45199
  Copyright terms: Public domain W3C validator