Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfo Structured version   Visualization version   GIF version

Theorem uspgrsprfo 48140
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprfo (𝑉𝑊𝐹:𝐺onto𝑃)
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑒,𝑊,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣   𝑊,𝑞
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem uspgrsprfo
Dummy variables 𝑎 𝑏 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . . 4 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . . 4 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf 48138 . . 3 𝐹:𝐺𝑃
54a1i 11 . 2 (𝑉𝑊𝐹:𝐺𝑃)
61eleq2i 2821 . . . . . . 7 (𝑎𝑃𝑎 ∈ 𝒫 (Pairs‘𝑉))
7 velpw 4571 . . . . . . 7 (𝑎 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑎 ⊆ (Pairs‘𝑉))
86, 7bitri 275 . . . . . 6 (𝑎𝑃𝑎 ⊆ (Pairs‘𝑉))
9 eqidd 2731 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑉 = 𝑉)
10 vex 3454 . . . . . . . . . . . . . . 15 𝑎 ∈ V
1110a1i 11 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ∈ V)
12 f1oi 6841 . . . . . . . . . . . . . . . . 17 ( I ↾ 𝑎):𝑎1-1-onto𝑎
1312a1i 11 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):𝑎1-1-onto𝑎)
14 dmresi 6026 . . . . . . . . . . . . . . . . 17 dom ( I ↾ 𝑎) = 𝑎
15 f1oeq2 6792 . . . . . . . . . . . . . . . . 17 (dom ( I ↾ 𝑎) = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎))
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎)
1713, 16sylibr 234 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎)
18 sprvalpwle2 47494 . . . . . . . . . . . . . . . . 17 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
1918sseq2d 3982 . . . . . . . . . . . . . . . 16 (𝑉𝑊 → (𝑎 ⊆ (Pairs‘𝑉) ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2019biimpac 478 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
2117, 20jca 511 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
22 f1oeq3 6793 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓 ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎))
23 sseq1 3975 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2422, 23anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = 𝑎 → ((( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) ↔ (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
2511, 21, 24spcedv 3567 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
26 resiexg 7891 . . . . . . . . . . . . . . 15 (𝑎 ∈ V → ( I ↾ 𝑎) ∈ V)
2710, 26ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ 𝑎) ∈ V
2827f11o 7928 . . . . . . . . . . . . 13 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2925, 28sylibr 234 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
3010a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ⊆ (Pairs‘𝑉) → 𝑎 ∈ V)
3130resiexd 7193 . . . . . . . . . . . . . 14 (𝑎 ⊆ (Pairs‘𝑉) → ( I ↾ 𝑎) ∈ V)
3231anim1ci 616 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V))
33 isuspgrop 29095 . . . . . . . . . . . . 13 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3432, 33syl 17 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3529, 34mpbird 257 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph)
36 fveqeq2 6870 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Vtx‘𝑞) = 𝑉 ↔ (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉))
37 fveqeq2 6870 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Edg‘𝑞) = 𝑎 ↔ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
3836, 37anbi12d 632 . . . . . . . . . . . 12 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
3938adantl 481 . . . . . . . . . . 11 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩) → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
40 opvtxfv 28938 . . . . . . . . . . . . . 14 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
4131, 40sylan2 593 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
42 edgopval 28985 . . . . . . . . . . . . . . 15 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
4331, 42sylan2 593 . . . . . . . . . . . . . 14 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
44 rnresi 6049 . . . . . . . . . . . . . 14 ran ( I ↾ 𝑎) = 𝑎
4543, 44eqtrdi 2781 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)
4641, 45jca 511 . . . . . . . . . . . 12 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
4746ancoms 458 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
4835, 39, 47rspcedvd 3593 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))
499, 48jca 511 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
502eleq2i 2821 . . . . . . . . . 10 (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
5130anim1ci 616 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊𝑎 ∈ V))
52 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (𝑣 = 𝑉𝑉 = 𝑉))
5352adantr 480 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (𝑣 = 𝑉𝑉 = 𝑉))
54 eqeq2 2742 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((Vtx‘𝑞) = 𝑣 ↔ (Vtx‘𝑞) = 𝑉))
55 eqeq2 2742 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → ((Edg‘𝑞) = 𝑒 ↔ (Edg‘𝑞) = 𝑎))
5654, 55bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑣 = 𝑉𝑒 = 𝑎) → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
5756rexbidv 3158 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
5853, 57anbi12d 632 . . . . . . . . . . . 12 ((𝑣 = 𝑉𝑒 = 𝑎) → ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
5958opelopabga 5496 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6051, 59syl 17 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6150, 60bitrid 283 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6249, 61mpbird 257 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, 𝑎⟩ ∈ 𝐺)
63 fveq2 6861 . . . . . . . . . 10 (𝑏 = ⟨𝑉, 𝑎⟩ → (2nd𝑏) = (2nd ‘⟨𝑉, 𝑎⟩))
6463eqeq2d 2741 . . . . . . . . 9 (𝑏 = ⟨𝑉, 𝑎⟩ → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
6564adantl 481 . . . . . . . 8 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑏 = ⟨𝑉, 𝑎⟩) → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
66 op2ndg 7984 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
6766elvd 3456 . . . . . . . . . 10 (𝑉𝑊 → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
6867adantl 481 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
6968eqcomd 2736 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩))
7062, 65, 69rspcedvd 3593 . . . . . . 7 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
7170ex 412 . . . . . 6 (𝑎 ⊆ (Pairs‘𝑉) → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
728, 71sylbi 217 . . . . 5 (𝑎𝑃 → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
7372impcom 407 . . . 4 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
741, 2, 3uspgrsprfv 48137 . . . . . . 7 (𝑏𝐺 → (𝐹𝑏) = (2nd𝑏))
7574adantl 481 . . . . . 6 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝐹𝑏) = (2nd𝑏))
7675eqeq2d 2741 . . . . 5 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (2nd𝑏)))
7776rexbidva 3156 . . . 4 ((𝑉𝑊𝑎𝑃) → (∃𝑏𝐺 𝑎 = (𝐹𝑏) ↔ ∃𝑏𝐺 𝑎 = (2nd𝑏)))
7873, 77mpbird 257 . . 3 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (𝐹𝑏))
7978ralrimiva 3126 . 2 (𝑉𝑊 → ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏))
80 dffo3 7077 . 2 (𝐹:𝐺onto𝑃 ↔ (𝐹:𝐺𝑃 ∧ ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏)))
815, 79, 80sylanbrc 583 1 (𝑉𝑊𝐹:𝐺onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  cop 4598   class class class wbr 5110  {copab 5172  cmpt 5191   I cid 5535  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  2nd c2nd 7970  cle 11216  2c2 12248  chash 14302  Vtxcvtx 28930  Edgcedg 28981  USPGraphcuspgr 29082  Pairscspr 47482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-vtx 28932  df-iedg 28933  df-edg 28982  df-upgr 29016  df-uspgr 29084  df-spr 47483
This theorem is referenced by:  uspgrsprf1o  48141
  Copyright terms: Public domain W3C validator