Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfo Structured version   Visualization version   GIF version

Theorem uspgrsprfo 44030
Description: The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprfo (𝑉𝑊𝐹:𝐺onto𝑃)
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑒,𝑊,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣   𝑊,𝑞
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem uspgrsprfo
Dummy variables 𝑎 𝑏 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . . 4 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . . 4 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf 44028 . . 3 𝐹:𝐺𝑃
54a1i 11 . 2 (𝑉𝑊𝐹:𝐺𝑃)
61eleq2i 2907 . . . . . . 7 (𝑎𝑃𝑎 ∈ 𝒫 (Pairs‘𝑉))
7 velpw 4547 . . . . . . 7 (𝑎 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑎 ⊆ (Pairs‘𝑉))
86, 7bitri 277 . . . . . 6 (𝑎𝑃𝑎 ⊆ (Pairs‘𝑉))
9 eqidd 2825 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑉 = 𝑉)
10 vex 3500 . . . . . . . . . . . . . . 15 𝑎 ∈ V
1110a1i 11 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ∈ V)
12 f1oi 6655 . . . . . . . . . . . . . . . . 17 ( I ↾ 𝑎):𝑎1-1-onto𝑎
1312a1i 11 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):𝑎1-1-onto𝑎)
14 dmresi 5924 . . . . . . . . . . . . . . . . 17 dom ( I ↾ 𝑎) = 𝑎
15 f1oeq2 6608 . . . . . . . . . . . . . . . . 17 (dom ( I ↾ 𝑎) = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎))
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎 ↔ ( I ↾ 𝑎):𝑎1-1-onto𝑎)
1713, 16sylibr 236 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎)
18 sprvalpwle2 43658 . . . . . . . . . . . . . . . . 17 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
1918sseq2d 4002 . . . . . . . . . . . . . . . 16 (𝑉𝑊 → (𝑎 ⊆ (Pairs‘𝑉) ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2019biimpac 481 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
2117, 20jca 514 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
22 f1oeq3 6609 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓 ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎))
23 sseq1 3995 . . . . . . . . . . . . . . 15 (𝑓 = 𝑎 → (𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2422, 23anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = 𝑎 → ((( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) ↔ (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑎𝑎 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
2511, 21, 24spcedv 3602 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
26 resiexg 7622 . . . . . . . . . . . . . . 15 (𝑎 ∈ V → ( I ↾ 𝑎) ∈ V)
2710, 26ax-mp 5 . . . . . . . . . . . . . 14 ( I ↾ 𝑎) ∈ V
2827f11o 7651 . . . . . . . . . . . . 13 (( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ∃𝑓(( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1-onto𝑓𝑓 ⊆ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2925, 28sylibr 236 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
3010a1i 11 . . . . . . . . . . . . . . . 16 (𝑎 ⊆ (Pairs‘𝑉) → 𝑎 ∈ V)
3130resiexd 6982 . . . . . . . . . . . . . . 15 (𝑎 ⊆ (Pairs‘𝑉) → ( I ↾ 𝑎) ∈ V)
3231anim2i 618 . . . . . . . . . . . . . 14 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V))
3332ancoms 461 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V))
34 isuspgrop 26949 . . . . . . . . . . . . 13 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3533, 34syl 17 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph ↔ ( I ↾ 𝑎):dom ( I ↾ 𝑎)–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3629, 35mpbird 259 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, ( I ↾ 𝑎)⟩ ∈ USPGraph)
37 fveqeq2 6682 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Vtx‘𝑞) = 𝑉 ↔ (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉))
38 fveqeq2 6682 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → ((Edg‘𝑞) = 𝑎 ↔ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
3937, 38anbi12d 632 . . . . . . . . . . . 12 (𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩ → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
4039adantl 484 . . . . . . . . . . 11 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑞 = ⟨𝑉, ( I ↾ 𝑎)⟩) → (((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎) ↔ ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)))
41 opvtxfv 26792 . . . . . . . . . . . . . 14 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
4232, 41syl 17 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉)
43 edgopval 26839 . . . . . . . . . . . . . . 15 ((𝑉𝑊 ∧ ( I ↾ 𝑎) ∈ V) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
4432, 43syl 17 . . . . . . . . . . . . . 14 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = ran ( I ↾ 𝑎))
45 rnresi 5946 . . . . . . . . . . . . . 14 ran ( I ↾ 𝑎) = 𝑎
4644, 45syl6eq 2875 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎)
4742, 46jca 514 . . . . . . . . . . . 12 ((𝑉𝑊𝑎 ⊆ (Pairs‘𝑉)) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
4847ancoms 461 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ((Vtx‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑉 ∧ (Edg‘⟨𝑉, ( I ↾ 𝑎)⟩) = 𝑎))
4936, 40, 48rspcedvd 3629 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))
509, 49jca 514 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
512eleq2i 2907 . . . . . . . . . 10 (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
5230anim1i 616 . . . . . . . . . . . 12 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑎 ∈ V ∧ 𝑉𝑊))
5352ancomd 464 . . . . . . . . . . 11 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (𝑉𝑊𝑎 ∈ V))
54 eqeq1 2828 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (𝑣 = 𝑉𝑉 = 𝑉))
5554adantr 483 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (𝑣 = 𝑉𝑉 = 𝑉))
56 eqeq2 2836 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((Vtx‘𝑞) = 𝑣 ↔ (Vtx‘𝑞) = 𝑉))
57 eqeq2 2836 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → ((Edg‘𝑞) = 𝑒 ↔ (Edg‘𝑞) = 𝑎))
5856, 57bi2anan9 637 . . . . . . . . . . . . . 14 ((𝑣 = 𝑉𝑒 = 𝑎) → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
5958rexbidv 3300 . . . . . . . . . . . . 13 ((𝑣 = 𝑉𝑒 = 𝑎) → (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎)))
6055, 59anbi12d 632 . . . . . . . . . . . 12 ((𝑣 = 𝑉𝑒 = 𝑎) → ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6160opelopabga 5423 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6253, 61syl 17 . . . . . . . . . 10 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6351, 62syl5bb 285 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (⟨𝑉, 𝑎⟩ ∈ 𝐺 ↔ (𝑉 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑉 ∧ (Edg‘𝑞) = 𝑎))))
6450, 63mpbird 259 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ⟨𝑉, 𝑎⟩ ∈ 𝐺)
65 fveq2 6673 . . . . . . . . . 10 (𝑏 = ⟨𝑉, 𝑎⟩ → (2nd𝑏) = (2nd ‘⟨𝑉, 𝑎⟩))
6665eqeq2d 2835 . . . . . . . . 9 (𝑏 = ⟨𝑉, 𝑎⟩ → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
6766adantl 484 . . . . . . . 8 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) ∧ 𝑏 = ⟨𝑉, 𝑎⟩) → (𝑎 = (2nd𝑏) ↔ 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩)))
68 op2ndg 7705 . . . . . . . . . . 11 ((𝑉𝑊𝑎 ∈ V) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
6968elvd 3503 . . . . . . . . . 10 (𝑉𝑊 → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
7069adantl 484 . . . . . . . . 9 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → (2nd ‘⟨𝑉, 𝑎⟩) = 𝑎)
7170eqcomd 2830 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → 𝑎 = (2nd ‘⟨𝑉, 𝑎⟩))
7264, 67, 71rspcedvd 3629 . . . . . . 7 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑉𝑊) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
7372ex 415 . . . . . 6 (𝑎 ⊆ (Pairs‘𝑉) → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
748, 73sylbi 219 . . . . 5 (𝑎𝑃 → (𝑉𝑊 → ∃𝑏𝐺 𝑎 = (2nd𝑏)))
7574impcom 410 . . . 4 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (2nd𝑏))
761, 2, 3uspgrsprfv 44027 . . . . . . 7 (𝑏𝐺 → (𝐹𝑏) = (2nd𝑏))
7776adantl 484 . . . . . 6 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝐹𝑏) = (2nd𝑏))
7877eqeq2d 2835 . . . . 5 (((𝑉𝑊𝑎𝑃) ∧ 𝑏𝐺) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (2nd𝑏)))
7978rexbidva 3299 . . . 4 ((𝑉𝑊𝑎𝑃) → (∃𝑏𝐺 𝑎 = (𝐹𝑏) ↔ ∃𝑏𝐺 𝑎 = (2nd𝑏)))
8075, 79mpbird 259 . . 3 ((𝑉𝑊𝑎𝑃) → ∃𝑏𝐺 𝑎 = (𝐹𝑏))
8180ralrimiva 3185 . 2 (𝑉𝑊 → ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏))
82 dffo3 6871 . 2 (𝐹:𝐺onto𝑃 ↔ (𝐹:𝐺𝑃 ∧ ∀𝑎𝑃𝑏𝐺 𝑎 = (𝐹𝑏)))
835, 81, 82sylanbrc 585 1 (𝑉𝑊𝐹:𝐺onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wral 3141  wrex 3142  {crab 3145  Vcvv 3497  cdif 3936  wss 3939  c0 4294  𝒫 cpw 4542  {csn 4570  cop 4576   class class class wbr 5069  {copab 5131  cmpt 5149   I cid 5462  dom cdm 5558  ran crn 5559  cres 5560  wf 6354  1-1wf1 6355  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  2nd c2nd 7691  cle 10679  2c2 11695  chash 13693  Vtxcvtx 26784  Edgcedg 26835  USPGraphcuspgr 26936  Pairscspr 43646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-vtx 26786  df-iedg 26787  df-edg 26836  df-upgr 26870  df-uspgr 26938  df-spr 43647
This theorem is referenced by:  uspgrsprf1o  44031
  Copyright terms: Public domain W3C validator