| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pfxf1 | Structured version Visualization version GIF version | ||
| Description: Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| Ref | Expression |
|---|---|
| pfxf1.1 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
| pfxf1.2 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) |
| pfxf1.3 | ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) |
| Ref | Expression |
|---|---|
| pfxf1 | ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxf1.2 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) | |
| 2 | pfxf1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) | |
| 3 | elfzuz3 13543 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘𝐿)) | |
| 4 | fzoss2 13709 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) | |
| 5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ (𝜑 → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) |
| 6 | pfxf1.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
| 7 | wrddm 14542 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊))) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 9 | 5, 8 | sseqtrrd 4001 | . . 3 ⊢ (𝜑 → (0..^𝐿) ⊆ dom 𝑊) |
| 10 | wrdf 14540 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 12 | 11, 5 | fssresd 6755 | . . 3 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) |
| 13 | f1resf1 6792 | . . 3 ⊢ ((𝑊:dom 𝑊–1-1→𝑆 ∧ (0..^𝐿) ⊆ dom 𝑊 ∧ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) | |
| 14 | 1, 9, 12, 13 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) |
| 15 | pfxres 14700 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) | |
| 16 | 6, 2, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) |
| 17 | pfxfn 14702 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) Fn (0..^𝐿)) | |
| 18 | 6, 2, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊 prefix 𝐿) Fn (0..^𝐿)) |
| 19 | 18 | fndmd 6653 | . . 3 ⊢ (𝜑 → dom (𝑊 prefix 𝐿) = (0..^𝐿)) |
| 20 | eqidd 2735 | . . 3 ⊢ (𝜑 → 𝑆 = 𝑆) | |
| 21 | 16, 19, 20 | f1eq123d 6820 | . 2 ⊢ (𝜑 → ((𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆 ↔ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆)) |
| 22 | 14, 21 | mpbird 257 | 1 ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 dom cdm 5665 ↾ cres 5667 Fn wfn 6536 ⟶wf 6537 –1-1→wf1 6538 ‘cfv 6541 (class class class)co 7413 0cc0 11137 ℤ≥cuz 12860 ...cfz 13529 ..^cfzo 13676 ♯chash 14352 Word cword 14535 prefix cpfx 14691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14353 df-word 14536 df-substr 14662 df-pfx 14692 |
| This theorem is referenced by: cycpmco2f1 33088 |
| Copyright terms: Public domain | W3C validator |