Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxf1 Structured version   Visualization version   GIF version

Theorem pfxf1 31351
Description: Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Hypotheses
Ref Expression
pfxf1.1 (𝜑𝑊 ∈ Word 𝑆)
pfxf1.2 (𝜑𝑊:dom 𝑊1-1𝑆)
pfxf1.3 (𝜑𝐿 ∈ (0...(♯‘𝑊)))
Assertion
Ref Expression
pfxf1 (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1𝑆)

Proof of Theorem pfxf1
StepHypRef Expression
1 pfxf1.2 . . 3 (𝜑𝑊:dom 𝑊1-1𝑆)
2 pfxf1.3 . . . . 5 (𝜑𝐿 ∈ (0...(♯‘𝑊)))
3 elfzuz3 13333 . . . . 5 (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐿))
4 fzoss2 13495 . . . . 5 ((♯‘𝑊) ∈ (ℤ𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑊)))
52, 3, 43syl 18 . . . 4 (𝜑 → (0..^𝐿) ⊆ (0..^(♯‘𝑊)))
6 pfxf1.1 . . . . 5 (𝜑𝑊 ∈ Word 𝑆)
7 wrddm 14303 . . . . 5 (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊)))
86, 7syl 17 . . . 4 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
95, 8sseqtrrd 3972 . . 3 (𝜑 → (0..^𝐿) ⊆ dom 𝑊)
10 wrdf 14301 . . . . 5 (𝑊 ∈ Word 𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
116, 10syl 17 . . . 4 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑆)
1211, 5fssresd 6679 . . 3 (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆)
13 f1resf1 6717 . . 3 ((𝑊:dom 𝑊1-1𝑆 ∧ (0..^𝐿) ⊆ dom 𝑊 ∧ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1𝑆)
141, 9, 12, 13syl3anc 1370 . 2 (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1𝑆)
15 pfxres 14471 . . . 4 ((𝑊 ∈ Word 𝑆𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿)))
166, 2, 15syl2anc 584 . . 3 (𝜑 → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿)))
17 pfxfn 14473 . . . . 5 ((𝑊 ∈ Word 𝑆𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) Fn (0..^𝐿))
186, 2, 17syl2anc 584 . . . 4 (𝜑 → (𝑊 prefix 𝐿) Fn (0..^𝐿))
1918fndmd 6577 . . 3 (𝜑 → dom (𝑊 prefix 𝐿) = (0..^𝐿))
20 eqidd 2738 . . 3 (𝜑𝑆 = 𝑆)
2116, 19, 20f1eq123d 6746 . 2 (𝜑 → ((𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1𝑆 ↔ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1𝑆))
2214, 21mpbird 256 1 (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wss 3897  dom cdm 5608  cres 5610   Fn wfn 6461  wf 6462  1-1wf1 6463  cfv 6466  (class class class)co 7317  0cc0 10951  cuz 12662  ...cfz 13319  ..^cfzo 13462  chash 14124  Word cword 14296   prefix cpfx 14462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-n0 12314  df-z 12400  df-uz 12663  df-fz 13320  df-fzo 13463  df-hash 14125  df-word 14297  df-substr 14433  df-pfx 14463
This theorem is referenced by:  cycpmco2f1  31526
  Copyright terms: Public domain W3C validator