![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pfxf1 | Structured version Visualization version GIF version |
Description: Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
Ref | Expression |
---|---|
pfxf1.1 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
pfxf1.2 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) |
pfxf1.3 | ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) |
Ref | Expression |
---|---|
pfxf1 | ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pfxf1.2 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) | |
2 | pfxf1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) | |
3 | elfzuz3 13497 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘𝐿)) | |
4 | fzoss2 13659 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ (𝜑 → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) |
6 | pfxf1.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
7 | wrddm 14470 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
9 | 5, 8 | sseqtrrd 4023 | . . 3 ⊢ (𝜑 → (0..^𝐿) ⊆ dom 𝑊) |
10 | wrdf 14468 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
12 | 11, 5 | fssresd 6758 | . . 3 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) |
13 | f1resf1 6796 | . . 3 ⊢ ((𝑊:dom 𝑊–1-1→𝑆 ∧ (0..^𝐿) ⊆ dom 𝑊 ∧ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) | |
14 | 1, 9, 12, 13 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) |
15 | pfxres 14628 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) | |
16 | 6, 2, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) |
17 | pfxfn 14630 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) Fn (0..^𝐿)) | |
18 | 6, 2, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊 prefix 𝐿) Fn (0..^𝐿)) |
19 | 18 | fndmd 6654 | . . 3 ⊢ (𝜑 → dom (𝑊 prefix 𝐿) = (0..^𝐿)) |
20 | eqidd 2733 | . . 3 ⊢ (𝜑 → 𝑆 = 𝑆) | |
21 | 16, 19, 20 | f1eq123d 6825 | . 2 ⊢ (𝜑 → ((𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆 ↔ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆)) |
22 | 14, 21 | mpbird 256 | 1 ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 dom cdm 5676 ↾ cres 5678 Fn wfn 6538 ⟶wf 6539 –1-1→wf1 6540 ‘cfv 6543 (class class class)co 7408 0cc0 11109 ℤ≥cuz 12821 ...cfz 13483 ..^cfzo 13626 ♯chash 14289 Word cword 14463 prefix cpfx 14619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-substr 14590 df-pfx 14620 |
This theorem is referenced by: cycpmco2f1 32278 |
Copyright terms: Public domain | W3C validator |