![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pfxf1 | Structured version Visualization version GIF version |
Description: Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
Ref | Expression |
---|---|
pfxf1.1 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
pfxf1.2 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) |
pfxf1.3 | ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) |
Ref | Expression |
---|---|
pfxf1 | ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pfxf1.2 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) | |
2 | pfxf1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) | |
3 | elfzuz3 13575 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘𝐿)) | |
4 | fzoss2 13738 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ (𝜑 → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) |
6 | pfxf1.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
7 | wrddm 14563 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
9 | 5, 8 | sseqtrrd 4050 | . . 3 ⊢ (𝜑 → (0..^𝐿) ⊆ dom 𝑊) |
10 | wrdf 14561 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
12 | 11, 5 | fssresd 6783 | . . 3 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) |
13 | f1resf1 6820 | . . 3 ⊢ ((𝑊:dom 𝑊–1-1→𝑆 ∧ (0..^𝐿) ⊆ dom 𝑊 ∧ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) | |
14 | 1, 9, 12, 13 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) |
15 | pfxres 14721 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) | |
16 | 6, 2, 15 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) |
17 | pfxfn 14723 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) Fn (0..^𝐿)) | |
18 | 6, 2, 17 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑊 prefix 𝐿) Fn (0..^𝐿)) |
19 | 18 | fndmd 6679 | . . 3 ⊢ (𝜑 → dom (𝑊 prefix 𝐿) = (0..^𝐿)) |
20 | eqidd 2741 | . . 3 ⊢ (𝜑 → 𝑆 = 𝑆) | |
21 | 16, 19, 20 | f1eq123d 6849 | . 2 ⊢ (𝜑 → ((𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆 ↔ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆)) |
22 | 14, 21 | mpbird 257 | 1 ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 dom cdm 5695 ↾ cres 5697 Fn wfn 6563 ⟶wf 6564 –1-1→wf1 6565 ‘cfv 6568 (class class class)co 7443 0cc0 11178 ℤ≥cuz 12897 ...cfz 13561 ..^cfzo 13705 ♯chash 14373 Word cword 14556 prefix cpfx 14712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-n0 12548 df-z 12634 df-uz 12898 df-fz 13562 df-fzo 13706 df-hash 14374 df-word 14557 df-substr 14683 df-pfx 14713 |
This theorem is referenced by: cycpmco2f1 33109 |
Copyright terms: Public domain | W3C validator |