Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pfxf1 | Structured version Visualization version GIF version |
Description: Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
Ref | Expression |
---|---|
pfxf1.1 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
pfxf1.2 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) |
pfxf1.3 | ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) |
Ref | Expression |
---|---|
pfxf1 | ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pfxf1.2 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) | |
2 | pfxf1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) | |
3 | elfzuz3 13333 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘𝐿)) | |
4 | fzoss2 13495 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ (𝜑 → (0..^𝐿) ⊆ (0..^(♯‘𝑊))) |
6 | pfxf1.1 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
7 | wrddm 14303 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → dom 𝑊 = (0..^(♯‘𝑊))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
9 | 5, 8 | sseqtrrd 3972 | . . 3 ⊢ (𝜑 → (0..^𝐿) ⊆ dom 𝑊) |
10 | wrdf 14301 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
12 | 11, 5 | fssresd 6679 | . . 3 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) |
13 | f1resf1 6717 | . . 3 ⊢ ((𝑊:dom 𝑊–1-1→𝑆 ∧ (0..^𝐿) ⊆ dom 𝑊 ∧ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)⟶𝑆) → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) | |
14 | 1, 9, 12, 13 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆) |
15 | pfxres 14471 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) | |
16 | 6, 2, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑊 prefix 𝐿) = (𝑊 ↾ (0..^𝐿))) |
17 | pfxfn 14473 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) Fn (0..^𝐿)) | |
18 | 6, 2, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑊 prefix 𝐿) Fn (0..^𝐿)) |
19 | 18 | fndmd 6577 | . . 3 ⊢ (𝜑 → dom (𝑊 prefix 𝐿) = (0..^𝐿)) |
20 | eqidd 2738 | . . 3 ⊢ (𝜑 → 𝑆 = 𝑆) | |
21 | 16, 19, 20 | f1eq123d 6746 | . 2 ⊢ (𝜑 → ((𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆 ↔ (𝑊 ↾ (0..^𝐿)):(0..^𝐿)–1-1→𝑆)) |
22 | 14, 21 | mpbird 256 | 1 ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 dom cdm 5608 ↾ cres 5610 Fn wfn 6461 ⟶wf 6462 –1-1→wf1 6463 ‘cfv 6466 (class class class)co 7317 0cc0 10951 ℤ≥cuz 12662 ...cfz 13319 ..^cfzo 13462 ♯chash 14124 Word cword 14296 prefix cpfx 14462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-fzo 13463 df-hash 14125 df-word 14297 df-substr 14433 df-pfx 14463 |
This theorem is referenced by: cycpmco2f1 31526 |
Copyright terms: Public domain | W3C validator |