MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrresf1 Structured version   Visualization version   GIF version

Theorem inrresf1 9810
Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
inrresf1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)

Proof of Theorem inrresf1
StepHypRef Expression
1 djurf1o 9806 . . 3 inr:V–1-1-onto→({1o} × V)
2 f1of1 6762 . . 3 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
31, 2ax-mp 5 . 2 inr:V–1-1→({1o} × V)
4 ssv 3954 . 2 𝐵 ⊆ V
5 inrresf 9809 . 2 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
6 f1resf1 6727 . 2 ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V ∧ (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)) → (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵))
73, 4, 5, 6mp3an 1463 1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  wss 3897  {csn 4573   × cxp 5612  cres 5616  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  1oc1o 8378  cdju 9791  inrcinr 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-dju 9794  df-inr 9796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator