MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrresf1 Structured version   Visualization version   GIF version

Theorem inrresf1 9685
Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
inrresf1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)

Proof of Theorem inrresf1
StepHypRef Expression
1 djurf1o 9681 . . 3 inr:V–1-1-onto→({1o} × V)
2 f1of1 6707 . . 3 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
31, 2ax-mp 5 . 2 inr:V–1-1→({1o} × V)
4 ssv 3944 . 2 𝐵 ⊆ V
5 inrresf 9684 . 2 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
6 f1resf1 6671 . 2 ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V ∧ (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)) → (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵))
73, 4, 5, 6mp3an 1460 1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3429  wss 3886  {csn 4561   × cxp 5582  cres 5586  wf 6422  1-1wf1 6423  1-1-ontowf1o 6425  1oc1o 8277  cdju 9666  inrcinr 9668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-om 7703  df-1st 7820  df-2nd 7821  df-1o 8284  df-dju 9669  df-inr 9671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator