MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrresf1 Structured version   Visualization version   GIF version

Theorem inrresf1 9936
Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
inrresf1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)

Proof of Theorem inrresf1
StepHypRef Expression
1 djurf1o 9932 . . 3 inr:V–1-1-onto→({1o} × V)
2 f1of1 6822 . . 3 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
31, 2ax-mp 5 . 2 inr:V–1-1→({1o} × V)
4 ssv 3988 . 2 𝐵 ⊆ V
5 inrresf 9935 . 2 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
6 f1resf1 6787 . 2 ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V ∧ (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)) → (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵))
73, 4, 5, 6mp3an 1463 1 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3464  wss 3931  {csn 4606   × cxp 5657  cres 5661  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  1oc1o 8478  cdju 9917  inrcinr 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-dju 9920  df-inr 9922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator