| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrresf1 | Structured version Visualization version GIF version | ||
| Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| inrresf1 | ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djurf1o 9954 | . . 3 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 2 | f1of1 6846 | . . 3 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ inr:V–1-1→({1o} × V) |
| 4 | ssv 4007 | . 2 ⊢ 𝐵 ⊆ V | |
| 5 | inrresf 9957 | . 2 ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) | |
| 6 | f1resf1 6811 | . 2 ⊢ ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V ∧ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵)) → (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵)) | |
| 7 | 3, 4, 5, 6 | mp3an 1462 | 1 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3479 ⊆ wss 3950 {csn 4625 × cxp 5682 ↾ cres 5686 ⟶wf 6556 –1-1→wf1 6557 –1-1-onto→wf1o 6559 1oc1o 8500 ⊔ cdju 9939 inrcinr 9941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1st 8015 df-2nd 8016 df-1o 8507 df-dju 9942 df-inr 9944 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |