![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrresf1 | Structured version Visualization version GIF version |
Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
inrresf1 | ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djurf1o 9026 | . . 3 ⊢ inr:V–1-1-onto→({1𝑜} × V) | |
2 | f1of1 6356 | . . 3 ⊢ (inr:V–1-1-onto→({1𝑜} × V) → inr:V–1-1→({1𝑜} × V)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ inr:V–1-1→({1𝑜} × V) |
4 | ssv 3822 | . 2 ⊢ 𝐵 ⊆ V | |
5 | inrresf 9029 | . 2 ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) | |
6 | f1resf1 6325 | . 2 ⊢ ((inr:V–1-1→({1𝑜} × V) ∧ 𝐵 ⊆ V ∧ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵)) → (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵)) | |
7 | 3, 4, 5, 6 | mp3an 1586 | 1 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3386 ⊆ wss 3770 {csn 4369 × cxp 5311 ↾ cres 5315 ⟶wf 6098 –1-1→wf1 6099 –1-1-onto→wf1o 6101 1𝑜c1o 7793 ⊔ cdju 9012 inrcinr 9014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-om 7301 df-1st 7402 df-2nd 7403 df-1o 7800 df-dju 9015 df-inr 9017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |