![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrresf1 | Structured version Visualization version GIF version |
Description: The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
inrresf1 | ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djurf1o 9928 | . . 3 ⊢ inr:V–1-1-onto→({1o} × V) | |
2 | f1of1 6832 | . . 3 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ inr:V–1-1→({1o} × V) |
4 | ssv 4002 | . 2 ⊢ 𝐵 ⊆ V | |
5 | inrresf 9931 | . 2 ⊢ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) | |
6 | f1resf1 6796 | . 2 ⊢ ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V ∧ (inr ↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵)) → (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵)) | |
7 | 3, 4, 5, 6 | mp3an 1458 | 1 ⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3469 ⊆ wss 3944 {csn 4624 × cxp 5670 ↾ cres 5674 ⟶wf 6538 –1-1→wf1 6539 –1-1-onto→wf1o 6541 1oc1o 8473 ⊔ cdju 9913 inrcinr 9915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7865 df-1st 7987 df-2nd 7988 df-1o 8480 df-dju 9916 df-inr 9918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |