Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inlresf1 | Structured version Visualization version GIF version |
Description: The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
Ref | Expression |
---|---|
inlresf1 | ⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1o 9601 | . . 3 ⊢ inl:V–1-1-onto→({∅} × V) | |
2 | f1of1 6699 | . . 3 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ inl:V–1-1→({∅} × V) |
4 | ssv 3941 | . 2 ⊢ 𝐴 ⊆ V | |
5 | inlresf 9603 | . 2 ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) | |
6 | f1resf1 6663 | . 2 ⊢ ((inl:V–1-1→({∅} × V) ∧ 𝐴 ⊆ V ∧ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵)) → (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵)) | |
7 | 3, 4, 5, 6 | mp3an 1459 | 1 ⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ⊆ wss 3883 ∅c0 4253 {csn 4558 × cxp 5578 ↾ cres 5582 ⟶wf 6414 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ⊔ cdju 9587 inlcinl 9588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 df-dju 9590 df-inl 9591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |