MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inlresf1 Structured version   Visualization version   GIF version

Theorem inlresf1 9934
Description: The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
inlresf1 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)

Proof of Theorem inlresf1
StepHypRef Expression
1 djulf1o 9931 . . 3 inl:V–1-1-onto→({∅} × V)
2 f1of1 6822 . . 3 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
31, 2ax-mp 5 . 2 inl:V–1-1→({∅} × V)
4 ssv 3988 . 2 𝐴 ⊆ V
5 inlresf 9933 . 2 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
6 f1resf1 6787 . 2 ((inl:V–1-1→({∅} × V) ∧ 𝐴 ⊆ V ∧ (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)) → (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵))
73, 4, 5, 6mp3an 1463 1 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3464  wss 3931  c0 4313  {csn 4606   × cxp 5657  cres 5661  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cdju 9917  inlcinl 9918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1st 7993  df-2nd 7994  df-dju 9920  df-inl 9921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator