![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extdg1b | Structured version Visualization version GIF version |
Description: The degree of the extension 𝐸/FldExt𝐹 is 1 iff 𝐸 and 𝐹 are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023.) |
Ref | Expression |
---|---|
extdg1b | ⊢ (𝐸/FldExt𝐹 → ((𝐸[:]𝐹) = 1 ↔ 𝐸 = 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extdg1id 33260 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹) | |
2 | oveq1 7411 | . . . 4 ⊢ (𝐸 = 𝐹 → (𝐸[:]𝐹) = (𝐹[:]𝐹)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐸 = 𝐹) → (𝐸[:]𝐹) = (𝐹[:]𝐹)) |
4 | fldextfld2 33247 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐸 = 𝐹) → 𝐹 ∈ Field) |
6 | extdgid 33257 | . . . 4 ⊢ (𝐹 ∈ Field → (𝐹[:]𝐹) = 1) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐸 = 𝐹) → (𝐹[:]𝐹) = 1) |
8 | 3, 7 | eqtrd 2766 | . 2 ⊢ ((𝐸/FldExt𝐹 ∧ 𝐸 = 𝐹) → (𝐸[:]𝐹) = 1) |
9 | 1, 8 | impbida 798 | 1 ⊢ (𝐸/FldExt𝐹 → ((𝐸[:]𝐹) = 1 ↔ 𝐸 = 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 (class class class)co 7404 1c1 11110 Fieldcfield 20586 /FldExtcfldext 33235 [:]cextdg 33238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-reg 9586 ax-inf2 9635 ax-ac2 10457 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-rpss 7709 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-r1 9758 df-rank 9759 df-dju 9895 df-card 9933 df-acn 9936 df-ac 10110 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-xnn0 12546 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14294 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ocomp 17225 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-mre 17537 df-mrc 17538 df-mri 17539 df-acs 17540 df-proset 18258 df-drs 18259 df-poset 18276 df-ipo 18491 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19048 df-ghm 19137 df-cntz 19231 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20234 df-dvdsr 20257 df-unit 20258 df-invr 20288 df-nzr 20413 df-subrg 20469 df-drng 20587 df-field 20588 df-lmod 20706 df-lss 20777 df-lsp 20817 df-lmhm 20868 df-lbs 20921 df-lvec 20949 df-sra 21019 df-rgmod 21020 df-lidl 21065 df-rsp 21066 df-dsmm 21623 df-frlm 21638 df-uvc 21674 df-lindf 21697 df-linds 21698 df-dim 33202 df-fldext 33239 df-extdg 33240 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |