Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt25 Structured version   Visualization version   GIF version

Theorem metakunt25 40077
Description: B is a permutation. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt25.1 (𝜑𝑀 ∈ ℕ)
metakunt25.2 (𝜑𝐼 ∈ ℕ)
metakunt25.3 (𝜑𝐼𝑀)
metakunt25.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
Assertion
Ref Expression
metakunt25 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem metakunt25
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt25.1 . . 3 (𝜑𝑀 ∈ ℕ)
2 metakunt25.2 . . 3 (𝜑𝐼 ∈ ℕ)
3 metakunt25.3 . . 3 (𝜑𝐼𝑀)
4 eqid 2738 . . 3 (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
51, 2, 3, 4metakunt15 40067 . 2 (𝜑 → (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))):(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
6 eqid 2738 . . 3 (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
71, 2, 3, 6metakunt16 40068 . 2 (𝜑 → (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))):(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
8 f1osng 6740 . . 3 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
91, 1, 8syl2anc 583 . 2 (𝜑 → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
101, 2, 3metakunt18 40070 . . . 4 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
1110simpld 494 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
1211simp1d 1140 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
1311simp2d 1141 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
1411simp3d 1142 . 2 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1510simprd 495 . . 3 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅))
1615simp1d 1140 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅)
1715simp2d 1141 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1815simp3d 1142 . 2 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)
19 eleq1 2826 . . . . . 6 (𝑀 = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (𝑀 ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
20 eleq1 2826 . . . . . 6 (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
211nnzd 12354 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2221adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
2322adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
24 eleq1 2826 . . . . . . 7 ((𝑥 + (𝑀𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (𝑀𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
25 eleq1 2826 . . . . . . 7 ((𝑥 + (1 − 𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (1 − 𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
26 elfzelz 13185 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
2827adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ ℤ)
2928adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
3022ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑀 ∈ ℤ)
312nnzd 12354 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℤ)
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
3332adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
3433adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
3530, 34zsubcld 12360 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑀𝐼) ∈ ℤ)
3629, 35zaddcld 12359 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑥 + (𝑀𝐼)) ∈ ℤ)
3728adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
38 1zzd 12281 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 1 ∈ ℤ)
3933adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
4038, 39zsubcld 12360 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (1 − 𝐼) ∈ ℤ)
4137, 40zaddcld 12359 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + (1 − 𝐼)) ∈ ℤ)
4224, 25, 36, 41ifbothda 4494 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ)
4319, 20, 23, 42ifbothda 4494 . . . . 5 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ)
44 metakunt25.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
4543, 44fmptd 6970 . . . 4 (𝜑𝐵:(1...𝑀)⟶ℤ)
4645ffnd 6585 . . 3 (𝜑𝐵 Fn (1...𝑀))
471, 2, 3, 44, 4, 6metakunt19 40071 . . . . . 6 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
4847simpld 494 . . . . 5 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
4948simp3d 1142 . . . 4 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
5047simprd 495 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
511, 2, 3metakunt24 40076 . . . . 5 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
5251simp1d 1140 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
5349, 50, 52fnund 6530 . . 3 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}) Fn (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
5451simp2d 1141 . . 3 (𝜑 → (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
551adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
562adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
573adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼𝑀)
58 simpr 484 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑦 ∈ (1...𝑀))
5955, 56, 57, 44, 4, 6, 58metakunt23 40075 . . 3 ((𝜑𝑦 ∈ (1...𝑀)) → (𝐵𝑦) = ((((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩})‘𝑦))
6046, 53, 54, 59eqfnfv2d2 39918 . 2 (𝜑𝐵 = (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}))
6151simp3d 1142 . 2 (𝜑 → (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}))
625, 7, 9, 12, 13, 14, 16, 17, 18, 60, 54, 61metakunt17 40069 1 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cun 3881  cin 3882  c0 4253  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   Fn wfn 6413  1-1-ontowf1o 6417  (class class class)co 7255  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312
This theorem is referenced by:  metakunt33  40085  metakunt34  40086
  Copyright terms: Public domain W3C validator