Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt25 Structured version   Visualization version   GIF version

Theorem metakunt25 39823
Description: B is a permutation. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt25.1 (𝜑𝑀 ∈ ℕ)
metakunt25.2 (𝜑𝐼 ∈ ℕ)
metakunt25.3 (𝜑𝐼𝑀)
metakunt25.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
Assertion
Ref Expression
metakunt25 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem metakunt25
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt25.1 . . 3 (𝜑𝑀 ∈ ℕ)
2 metakunt25.2 . . 3 (𝜑𝐼 ∈ ℕ)
3 metakunt25.3 . . 3 (𝜑𝐼𝑀)
4 eqid 2734 . . 3 (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
51, 2, 3, 4metakunt15 39813 . 2 (𝜑 → (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))):(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
6 eqid 2734 . . 3 (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
71, 2, 3, 6metakunt16 39814 . 2 (𝜑 → (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))):(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
8 f1osng 6690 . . 3 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
91, 1, 8syl2anc 587 . 2 (𝜑 → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
101, 2, 3metakunt18 39816 . . . 4 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
1110simpld 498 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
1211simp1d 1144 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
1311simp2d 1145 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
1411simp3d 1146 . 2 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1510simprd 499 . . 3 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅))
1615simp1d 1144 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅)
1715simp2d 1145 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1815simp3d 1146 . 2 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)
19 eleq1 2821 . . . . . 6 (𝑀 = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (𝑀 ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
20 eleq1 2821 . . . . . 6 (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
211nnzd 12264 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2221adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
2322adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
24 eleq1 2821 . . . . . . 7 ((𝑥 + (𝑀𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (𝑀𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
25 eleq1 2821 . . . . . . 7 ((𝑥 + (1 − 𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (1 − 𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
26 elfzelz 13095 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2726adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
2827adantr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ ℤ)
2928adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
3022ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑀 ∈ ℤ)
312nnzd 12264 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℤ)
3231adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
3332adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
3433adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
3530, 34zsubcld 12270 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑀𝐼) ∈ ℤ)
3629, 35zaddcld 12269 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑥 + (𝑀𝐼)) ∈ ℤ)
3728adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
38 1zzd 12191 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 1 ∈ ℤ)
3933adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
4038, 39zsubcld 12270 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (1 − 𝐼) ∈ ℤ)
4137, 40zaddcld 12269 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + (1 − 𝐼)) ∈ ℤ)
4224, 25, 36, 41ifbothda 4467 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ)
4319, 20, 23, 42ifbothda 4467 . . . . 5 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ)
44 metakunt25.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
4543, 44fmptd 6920 . . . 4 (𝜑𝐵:(1...𝑀)⟶ℤ)
4645ffnd 6535 . . 3 (𝜑𝐵 Fn (1...𝑀))
471, 2, 3, 44, 4, 6metakunt19 39817 . . . . . 6 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
4847simpld 498 . . . . 5 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
4948simp3d 1146 . . . 4 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
5047simprd 499 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
511, 2, 3metakunt24 39822 . . . . 5 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
5251simp1d 1144 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
5349, 50, 52fnund 6480 . . 3 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}) Fn (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
5451simp2d 1145 . . 3 (𝜑 → (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
551adantr 484 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
562adantr 484 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
573adantr 484 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼𝑀)
58 simpr 488 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑦 ∈ (1...𝑀))
5955, 56, 57, 44, 4, 6, 58metakunt23 39821 . . 3 ((𝜑𝑦 ∈ (1...𝑀)) → (𝐵𝑦) = ((((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩})‘𝑦))
6046, 53, 54, 59eqfnfv2d2 39681 . 2 (𝜑𝐵 = (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}))
6151simp3d 1146 . 2 (𝜑 → (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}))
625, 7, 9, 12, 13, 14, 16, 17, 18, 60, 54, 61metakunt17 39815 1 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cun 3855  cin 3856  c0 4227  ifcif 4429  {csn 4531  cop 4537   class class class wbr 5043  cmpt 5124   Fn wfn 6364  1-1-ontowf1o 6368  (class class class)co 7202  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045  cn 11813  cz 12159  ...cfz 13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222
This theorem is referenced by:  metakunt33  39831  metakunt34  39832
  Copyright terms: Public domain W3C validator