Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt25 Structured version   Visualization version   GIF version

Theorem metakunt25 40601
Description: B is a permutation. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt25.1 (𝜑𝑀 ∈ ℕ)
metakunt25.2 (𝜑𝐼 ∈ ℕ)
metakunt25.3 (𝜑𝐼𝑀)
metakunt25.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
Assertion
Ref Expression
metakunt25 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem metakunt25
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt25.1 . . 3 (𝜑𝑀 ∈ ℕ)
2 metakunt25.2 . . 3 (𝜑𝐼 ∈ ℕ)
3 metakunt25.3 . . 3 (𝜑𝐼𝑀)
4 eqid 2736 . . 3 (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
51, 2, 3, 4metakunt15 40591 . 2 (𝜑 → (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))):(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
6 eqid 2736 . . 3 (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
71, 2, 3, 6metakunt16 40592 . 2 (𝜑 → (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))):(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
8 f1osng 6825 . . 3 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
91, 1, 8syl2anc 584 . 2 (𝜑 → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
101, 2, 3metakunt18 40594 . . . 4 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
1110simpld 495 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
1211simp1d 1142 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
1311simp2d 1143 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
1411simp3d 1144 . 2 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1510simprd 496 . . 3 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅))
1615simp1d 1142 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅)
1715simp2d 1143 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1815simp3d 1144 . 2 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)
19 eleq1 2825 . . . . . 6 (𝑀 = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (𝑀 ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
20 eleq1 2825 . . . . . 6 (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
211nnzd 12526 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2221adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
2322adantr 481 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
24 eleq1 2825 . . . . . . 7 ((𝑥 + (𝑀𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (𝑀𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
25 eleq1 2825 . . . . . . 7 ((𝑥 + (1 − 𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (1 − 𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
26 elfzelz 13441 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2726adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
2827adantr 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ ℤ)
2928adantr 481 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
3022ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑀 ∈ ℤ)
312nnzd 12526 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℤ)
3231adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
3332adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
3433adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
3530, 34zsubcld 12612 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑀𝐼) ∈ ℤ)
3629, 35zaddcld 12611 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑥 + (𝑀𝐼)) ∈ ℤ)
3728adantr 481 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
38 1zzd 12534 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 1 ∈ ℤ)
3933adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
4038, 39zsubcld 12612 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (1 − 𝐼) ∈ ℤ)
4137, 40zaddcld 12611 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + (1 − 𝐼)) ∈ ℤ)
4224, 25, 36, 41ifbothda 4524 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ)
4319, 20, 23, 42ifbothda 4524 . . . . 5 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ)
44 metakunt25.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
4543, 44fmptd 7062 . . . 4 (𝜑𝐵:(1...𝑀)⟶ℤ)
4645ffnd 6669 . . 3 (𝜑𝐵 Fn (1...𝑀))
471, 2, 3, 44, 4, 6metakunt19 40595 . . . . . 6 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
4847simpld 495 . . . . 5 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
4948simp3d 1144 . . . 4 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
5047simprd 496 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
511, 2, 3metakunt24 40600 . . . . 5 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
5251simp1d 1142 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
5349, 50, 52fnund 6615 . . 3 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}) Fn (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
5451simp2d 1143 . . 3 (𝜑 → (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
551adantr 481 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
562adantr 481 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
573adantr 481 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼𝑀)
58 simpr 485 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑦 ∈ (1...𝑀))
5955, 56, 57, 44, 4, 6, 58metakunt23 40599 . . 3 ((𝜑𝑦 ∈ (1...𝑀)) → (𝐵𝑦) = ((((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩})‘𝑦))
6046, 53, 54, 59eqfnfv2d2 40439 . 2 (𝜑𝐵 = (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}))
6151simp3d 1144 . 2 (𝜑 → (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}))
625, 7, 9, 12, 13, 14, 16, 17, 18, 60, 54, 61metakunt17 40593 1 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cun 3908  cin 3909  c0 4282  ifcif 4486  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188   Fn wfn 6491  1-1-ontowf1o 6495  (class class class)co 7357  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  cz 12499  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568
This theorem is referenced by:  metakunt33  40609  metakunt34  40610
  Copyright terms: Public domain W3C validator