Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt25 Structured version   Visualization version   GIF version

Theorem metakunt25 42211
Description: B is a permutation. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt25.1 (𝜑𝑀 ∈ ℕ)
metakunt25.2 (𝜑𝐼 ∈ ℕ)
metakunt25.3 (𝜑𝐼𝑀)
metakunt25.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
Assertion
Ref Expression
metakunt25 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem metakunt25
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt25.1 . . 3 (𝜑𝑀 ∈ ℕ)
2 metakunt25.2 . . 3 (𝜑𝐼 ∈ ℕ)
3 metakunt25.3 . . 3 (𝜑𝐼𝑀)
4 eqid 2735 . . 3 (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
51, 2, 3, 4metakunt15 42201 . 2 (𝜑 → (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))):(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
6 eqid 2735 . . 3 (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
71, 2, 3, 6metakunt16 42202 . 2 (𝜑 → (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))):(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
8 f1osng 6890 . . 3 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
91, 1, 8syl2anc 584 . 2 (𝜑 → {⟨𝑀, 𝑀⟩}:{𝑀}–1-1-onto→{𝑀})
101, 2, 3metakunt18 42204 . . . 4 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
1110simpld 494 . . 3 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
1211simp1d 1141 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
1311simp2d 1142 . 2 (𝜑 → ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅)
1411simp3d 1143 . 2 (𝜑 → ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1510simprd 495 . . 3 (𝜑 → (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅))
1615simp1d 1141 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅)
1715simp2d 1142 . 2 (𝜑 → ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅)
1815simp3d 1143 . 2 (𝜑 → ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)
19 eleq1 2827 . . . . . 6 (𝑀 = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (𝑀 ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
20 eleq1 2827 . . . . . 6 (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) = if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) → (if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ ↔ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ))
211nnzd 12638 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
2221adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
2322adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ 𝑥 = 𝑀) → 𝑀 ∈ ℤ)
24 eleq1 2827 . . . . . . 7 ((𝑥 + (𝑀𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (𝑀𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
25 eleq1 2827 . . . . . . 7 ((𝑥 + (1 − 𝐼)) = if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) → ((𝑥 + (1 − 𝐼)) ∈ ℤ ↔ if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ))
26 elfzelz 13561 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ℤ)
2827adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝑥 ∈ ℤ)
2928adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
3022ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝑀 ∈ ℤ)
312nnzd 12638 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℤ)
3231adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
3332adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → 𝐼 ∈ ℤ)
3433adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
3530, 34zsubcld 12725 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑀𝐼) ∈ ℤ)
3629, 35zaddcld 12724 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ 𝑥 < 𝐼) → (𝑥 + (𝑀𝐼)) ∈ ℤ)
3728adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝑥 ∈ ℤ)
38 1zzd 12646 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 1 ∈ ℤ)
3933adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → 𝐼 ∈ ℤ)
4038, 39zsubcld 12725 . . . . . . . 8 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (1 − 𝐼) ∈ ℤ)
4137, 40zaddcld 12724 . . . . . . 7 ((((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) ∧ ¬ 𝑥 < 𝐼) → (𝑥 + (1 − 𝐼)) ∈ ℤ)
4224, 25, 36, 41ifbothda 4569 . . . . . 6 (((𝜑𝑥 ∈ (1...𝑀)) ∧ ¬ 𝑥 = 𝑀) → if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼))) ∈ ℤ)
4319, 20, 23, 42ifbothda 4569 . . . . 5 ((𝜑𝑥 ∈ (1...𝑀)) → if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))) ∈ ℤ)
44 metakunt25.4 . . . . 5 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
4543, 44fmptd 7134 . . . 4 (𝜑𝐵:(1...𝑀)⟶ℤ)
4645ffnd 6738 . . 3 (𝜑𝐵 Fn (1...𝑀))
471, 2, 3, 44, 4, 6metakunt19 42205 . . . . . 6 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
4847simpld 494 . . . . 5 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) Fn (1...(𝐼 − 1)) ∧ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) Fn (𝐼...(𝑀 − 1)) ∧ ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
4948simp3d 1143 . . . 4 (𝜑 → ((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
5047simprd 495 . . . 4 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
511, 2, 3metakunt24 42210 . . . . 5 (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
5251simp1d 1141 . . . 4 (𝜑 → (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅)
5349, 50, 52fnund 6684 . . 3 (𝜑 → (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}) Fn (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
5451simp2d 1142 . . 3 (𝜑 → (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}))
551adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
562adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
573adantr 480 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝐼𝑀)
58 simpr 484 . . . 4 ((𝜑𝑦 ∈ (1...𝑀)) → 𝑦 ∈ (1...𝑀))
5955, 56, 57, 44, 4, 6, 58metakunt23 42209 . . 3 ((𝜑𝑦 ∈ (1...𝑀)) → (𝐵𝑦) = ((((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩})‘𝑦))
6046, 53, 54, 59eqfnfv2d2 41963 . 2 (𝜑𝐵 = (((𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼))) ∪ (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))) ∪ {⟨𝑀, 𝑀⟩}))
6151simp3d 1143 . 2 (𝜑 → (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀}))
625, 7, 9, 12, 13, 14, 16, 17, 18, 60, 54, 61metakunt17 42203 1 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cun 3961  cin 3962  c0 4339  ifcif 4531  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231   Fn wfn 6558  1-1-ontowf1o 6562  (class class class)co 7431  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692
This theorem is referenced by:  metakunt33  42219  metakunt34  42220
  Copyright terms: Public domain W3C validator