![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt19 | Structured version Visualization version GIF version |
Description: Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
metakunt19.1 | β’ (π β π β β) |
metakunt19.2 | β’ (π β πΌ β β) |
metakunt19.3 | β’ (π β πΌ β€ π) |
metakunt19.4 | β’ π΅ = (π₯ β (1...π) β¦ if(π₯ = π, π, if(π₯ < πΌ, (π₯ + (π β πΌ)), (π₯ + (1 β πΌ))))) |
metakunt19.5 | β’ πΆ = (π₯ β (1...(πΌ β 1)) β¦ (π₯ + (π β πΌ))) |
metakunt19.6 | β’ π· = (π₯ β (πΌ...(π β 1)) β¦ (π₯ + (1 β πΌ))) |
Ref | Expression |
---|---|
metakunt19 | β’ (π β ((πΆ Fn (1...(πΌ β 1)) β§ π· Fn (πΌ...(π β 1)) β§ (πΆ βͺ π·) Fn ((1...(πΌ β 1)) βͺ (πΌ...(π β 1)))) β§ {β¨π, πβ©} Fn {π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13501 | . . . . . . 7 β’ (π₯ β (1...(πΌ β 1)) β π₯ β β€) | |
2 | 1 | adantl 483 | . . . . . 6 β’ ((π β§ π₯ β (1...(πΌ β 1))) β π₯ β β€) |
3 | metakunt19.1 | . . . . . . . . 9 β’ (π β π β β) | |
4 | 3 | nnzd 12585 | . . . . . . . 8 β’ (π β π β β€) |
5 | 4 | adantr 482 | . . . . . . 7 β’ ((π β§ π₯ β (1...(πΌ β 1))) β π β β€) |
6 | metakunt19.2 | . . . . . . . . 9 β’ (π β πΌ β β) | |
7 | 6 | nnzd 12585 | . . . . . . . 8 β’ (π β πΌ β β€) |
8 | 7 | adantr 482 | . . . . . . 7 β’ ((π β§ π₯ β (1...(πΌ β 1))) β πΌ β β€) |
9 | 5, 8 | zsubcld 12671 | . . . . . 6 β’ ((π β§ π₯ β (1...(πΌ β 1))) β (π β πΌ) β β€) |
10 | 2, 9 | zaddcld 12670 | . . . . 5 β’ ((π β§ π₯ β (1...(πΌ β 1))) β (π₯ + (π β πΌ)) β β€) |
11 | metakunt19.5 | . . . . 5 β’ πΆ = (π₯ β (1...(πΌ β 1)) β¦ (π₯ + (π β πΌ))) | |
12 | 10, 11 | fmptd 7114 | . . . 4 β’ (π β πΆ:(1...(πΌ β 1))βΆβ€) |
13 | 12 | ffnd 6719 | . . 3 β’ (π β πΆ Fn (1...(πΌ β 1))) |
14 | elfzelz 13501 | . . . . . . 7 β’ (π₯ β (πΌ...(π β 1)) β π₯ β β€) | |
15 | 14 | adantl 483 | . . . . . 6 β’ ((π β§ π₯ β (πΌ...(π β 1))) β π₯ β β€) |
16 | 1zzd 12593 | . . . . . . 7 β’ ((π β§ π₯ β (πΌ...(π β 1))) β 1 β β€) | |
17 | 7 | adantr 482 | . . . . . . 7 β’ ((π β§ π₯ β (πΌ...(π β 1))) β πΌ β β€) |
18 | 16, 17 | zsubcld 12671 | . . . . . 6 β’ ((π β§ π₯ β (πΌ...(π β 1))) β (1 β πΌ) β β€) |
19 | 15, 18 | zaddcld 12670 | . . . . 5 β’ ((π β§ π₯ β (πΌ...(π β 1))) β (π₯ + (1 β πΌ)) β β€) |
20 | metakunt19.6 | . . . . 5 β’ π· = (π₯ β (πΌ...(π β 1)) β¦ (π₯ + (1 β πΌ))) | |
21 | 19, 20 | fmptd 7114 | . . . 4 β’ (π β π·:(πΌ...(π β 1))βΆβ€) |
22 | 21 | ffnd 6719 | . . 3 β’ (π β π· Fn (πΌ...(π β 1))) |
23 | metakunt19.3 | . . . . . . 7 β’ (π β πΌ β€ π) | |
24 | 3, 6, 23 | metakunt18 41002 | . . . . . 6 β’ (π β ((((1...(πΌ β 1)) β© (πΌ...(π β 1))) = β β§ ((1...(πΌ β 1)) β© {π}) = β β§ ((πΌ...(π β 1)) β© {π}) = β ) β§ (((((π β πΌ) + 1)...(π β 1)) β© (1...(π β πΌ))) = β β§ ((((π β πΌ) + 1)...(π β 1)) β© {π}) = β β§ ((1...(π β πΌ)) β© {π}) = β ))) |
25 | 24 | simpld 496 | . . . . 5 β’ (π β (((1...(πΌ β 1)) β© (πΌ...(π β 1))) = β β§ ((1...(πΌ β 1)) β© {π}) = β β§ ((πΌ...(π β 1)) β© {π}) = β )) |
26 | 25 | simp1d 1143 | . . . 4 β’ (π β ((1...(πΌ β 1)) β© (πΌ...(π β 1))) = β ) |
27 | 13, 22, 26 | fnund 6665 | . . 3 β’ (π β (πΆ βͺ π·) Fn ((1...(πΌ β 1)) βͺ (πΌ...(π β 1)))) |
28 | 13, 22, 27 | 3jca 1129 | . 2 β’ (π β (πΆ Fn (1...(πΌ β 1)) β§ π· Fn (πΌ...(π β 1)) β§ (πΆ βͺ π·) Fn ((1...(πΌ β 1)) βͺ (πΌ...(π β 1))))) |
29 | fnsng 6601 | . . 3 β’ ((π β β β§ π β β) β {β¨π, πβ©} Fn {π}) | |
30 | 3, 3, 29 | syl2anc 585 | . 2 β’ (π β {β¨π, πβ©} Fn {π}) |
31 | 28, 30 | jca 513 | 1 β’ (π β ((πΆ Fn (1...(πΌ β 1)) β§ π· Fn (πΌ...(π β 1)) β§ (πΆ βͺ π·) Fn ((1...(πΌ β 1)) βͺ (πΌ...(π β 1)))) β§ {β¨π, πβ©} Fn {π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βͺ cun 3947 β© cin 3948 β c0 4323 ifcif 4529 {csn 4629 β¨cop 4635 class class class wbr 5149 β¦ cmpt 5232 Fn wfn 6539 (class class class)co 7409 1c1 11111 + caddc 11113 < clt 11248 β€ cle 11249 β cmin 11444 βcn 12212 β€cz 12558 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 |
This theorem is referenced by: metakunt20 41004 metakunt21 41005 metakunt22 41006 metakunt25 41009 |
Copyright terms: Public domain | W3C validator |