Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt19 | Structured version Visualization version GIF version |
Description: Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
metakunt19.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt19.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt19.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt19.4 | ⊢ 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀 − 𝐼)), (𝑥 + (1 − 𝐼))))) |
metakunt19.5 | ⊢ 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀 − 𝐼))) |
metakunt19.6 | ⊢ 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) |
Ref | Expression |
---|---|
metakunt19 | ⊢ (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {〈𝑀, 𝑀〉} Fn {𝑀})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 12956 | . . . . . . 7 ⊢ (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℤ) | |
2 | 1 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ ℤ) |
3 | metakunt19.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 3 | nnzd 12125 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | 4 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ) |
6 | metakunt19.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
7 | 6 | nnzd 12125 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
8 | 7 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ) |
9 | 5, 8 | zsubcld 12131 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → (𝑀 − 𝐼) ∈ ℤ) |
10 | 2, 9 | zaddcld 12130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀 − 𝐼)) ∈ ℤ) |
11 | metakunt19.5 | . . . . 5 ⊢ 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀 − 𝐼))) | |
12 | 10, 11 | fmptd 6869 | . . . 4 ⊢ (𝜑 → 𝐶:(1...(𝐼 − 1))⟶ℤ) |
13 | 12 | ffnd 6499 | . . 3 ⊢ (𝜑 → 𝐶 Fn (1...(𝐼 − 1))) |
14 | elfzelz 12956 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ) | |
15 | 14 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ ℤ) |
16 | 1zzd 12052 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ) | |
17 | 7 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ) |
18 | 16, 17 | zsubcld 12131 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ) |
19 | 15, 18 | zaddcld 12130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ ℤ) |
20 | metakunt19.6 | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) | |
21 | 19, 20 | fmptd 6869 | . . . 4 ⊢ (𝜑 → 𝐷:(𝐼...(𝑀 − 1))⟶ℤ) |
22 | 21 | ffnd 6499 | . . 3 ⊢ (𝜑 → 𝐷 Fn (𝐼...(𝑀 − 1))) |
23 | metakunt19.3 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
24 | 3, 6, 23 | metakunt18 39686 | . . . . . 6 ⊢ (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀 − 𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀 − 𝐼))) = ∅ ∧ ((((𝑀 − 𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀 − 𝐼)) ∩ {𝑀}) = ∅))) |
25 | 24 | simpld 498 | . . . . 5 ⊢ (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)) |
26 | 25 | simp1d 1139 | . . . 4 ⊢ (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅) |
27 | 13, 22, 26 | fnund 6446 | . . 3 ⊢ (𝜑 → (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) |
28 | 13, 22, 27 | 3jca 1125 | . 2 ⊢ (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))) |
29 | fnsng 6387 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → {〈𝑀, 𝑀〉} Fn {𝑀}) | |
30 | 3, 3, 29 | syl2anc 587 | . 2 ⊢ (𝜑 → {〈𝑀, 𝑀〉} Fn {𝑀}) |
31 | 28, 30 | jca 515 | 1 ⊢ (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {〈𝑀, 𝑀〉} Fn {𝑀})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∪ cun 3856 ∩ cin 3857 ∅c0 4225 ifcif 4420 {csn 4522 〈cop 4528 class class class wbr 5032 ↦ cmpt 5112 Fn wfn 6330 (class class class)co 7150 1c1 10576 + caddc 10578 < clt 10713 ≤ cle 10714 − cmin 10908 ℕcn 11674 ℤcz 12020 ...cfz 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 |
This theorem is referenced by: metakunt20 39688 metakunt21 39689 metakunt22 39690 metakunt25 39693 |
Copyright terms: Public domain | W3C validator |