Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt19 Structured version   Visualization version   GIF version

Theorem metakunt19 42205
Description: Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
metakunt19.1 (𝜑𝑀 ∈ ℕ)
metakunt19.2 (𝜑𝐼 ∈ ℕ)
metakunt19.3 (𝜑𝐼𝑀)
metakunt19.4 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))
metakunt19.5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
metakunt19.6 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
Assertion
Ref Expression
metakunt19 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem metakunt19
StepHypRef Expression
1 elfzelz 13561 . . . . . . 7 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℤ)
21adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ ℤ)
3 metakunt19.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
43nnzd 12638 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
54adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ)
6 metakunt19.2 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ)
76nnzd 12638 . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
87adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ)
95, 8zsubcld 12725 . . . . . 6 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℤ)
102, 9zaddcld 12724 . . . . 5 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀𝐼)) ∈ ℤ)
11 metakunt19.5 . . . . 5 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
1210, 11fmptd 7134 . . . 4 (𝜑𝐶:(1...(𝐼 − 1))⟶ℤ)
1312ffnd 6738 . . 3 (𝜑𝐶 Fn (1...(𝐼 − 1)))
14 elfzelz 13561 . . . . . . 7 (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ)
1514adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ ℤ)
16 1zzd 12646 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ)
177adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ)
1816, 17zsubcld 12725 . . . . . 6 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ)
1915, 18zaddcld 12724 . . . . 5 ((𝜑𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ ℤ)
20 metakunt19.6 . . . . 5 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))
2119, 20fmptd 7134 . . . 4 (𝜑𝐷:(𝐼...(𝑀 − 1))⟶ℤ)
2221ffnd 6738 . . 3 (𝜑𝐷 Fn (𝐼...(𝑀 − 1)))
23 metakunt19.3 . . . . . . 7 (𝜑𝐼𝑀)
243, 6, 23metakunt18 42204 . . . . . 6 (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
2524simpld 494 . . . . 5 (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅))
2625simp1d 1141 . . . 4 (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅)
2713, 22, 26fnund 6684 . . 3 (𝜑 → (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))
2813, 22, 273jca 1127 . 2 (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))))
29 fnsng 6620 . . 3 ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → {⟨𝑀, 𝑀⟩} Fn {𝑀})
303, 3, 29syl2anc 584 . 2 (𝜑 → {⟨𝑀, 𝑀⟩} Fn {𝑀})
3128, 30jca 511 1 (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cun 3961  cin 3962  c0 4339  ifcif 4531  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231   Fn wfn 6558  (class class class)co 7431  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545
This theorem is referenced by:  metakunt20  42206  metakunt21  42207  metakunt22  42208  metakunt25  42211
  Copyright terms: Public domain W3C validator