Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt19 | Structured version Visualization version GIF version |
Description: Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
metakunt19.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt19.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt19.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt19.4 | ⊢ 𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀 − 𝐼)), (𝑥 + (1 − 𝐼))))) |
metakunt19.5 | ⊢ 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀 − 𝐼))) |
metakunt19.6 | ⊢ 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) |
Ref | Expression |
---|---|
metakunt19 | ⊢ (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {〈𝑀, 𝑀〉} Fn {𝑀})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13256 | . . . . . . 7 ⊢ (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℤ) | |
2 | 1 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ ℤ) |
3 | metakunt19.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 3 | nnzd 12425 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | 4 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ) |
6 | metakunt19.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
7 | 6 | nnzd 12425 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ) |
9 | 5, 8 | zsubcld 12431 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → (𝑀 − 𝐼) ∈ ℤ) |
10 | 2, 9 | zaddcld 12430 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀 − 𝐼)) ∈ ℤ) |
11 | metakunt19.5 | . . . . 5 ⊢ 𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀 − 𝐼))) | |
12 | 10, 11 | fmptd 6988 | . . . 4 ⊢ (𝜑 → 𝐶:(1...(𝐼 − 1))⟶ℤ) |
13 | 12 | ffnd 6601 | . . 3 ⊢ (𝜑 → 𝐶 Fn (1...(𝐼 − 1))) |
14 | elfzelz 13256 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐼...(𝑀 − 1)) → 𝑥 ∈ ℤ) | |
15 | 14 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝑥 ∈ ℤ) |
16 | 1zzd 12351 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → 1 ∈ ℤ) | |
17 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → 𝐼 ∈ ℤ) |
18 | 16, 17 | zsubcld 12431 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → (1 − 𝐼) ∈ ℤ) |
19 | 15, 18 | zaddcld 12430 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼...(𝑀 − 1))) → (𝑥 + (1 − 𝐼)) ∈ ℤ) |
20 | metakunt19.6 | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼))) | |
21 | 19, 20 | fmptd 6988 | . . . 4 ⊢ (𝜑 → 𝐷:(𝐼...(𝑀 − 1))⟶ℤ) |
22 | 21 | ffnd 6601 | . . 3 ⊢ (𝜑 → 𝐷 Fn (𝐼...(𝑀 − 1))) |
23 | metakunt19.3 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
24 | 3, 6, 23 | metakunt18 40142 | . . . . . 6 ⊢ (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀 − 𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀 − 𝐼))) = ∅ ∧ ((((𝑀 − 𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀 − 𝐼)) ∩ {𝑀}) = ∅))) |
25 | 24 | simpld 495 | . . . . 5 ⊢ (𝜑 → (((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅)) |
26 | 25 | simp1d 1141 | . . . 4 ⊢ (𝜑 → ((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅) |
27 | 13, 22, 26 | fnund 6546 | . . 3 ⊢ (𝜑 → (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) |
28 | 13, 22, 27 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))))) |
29 | fnsng 6486 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → {〈𝑀, 𝑀〉} Fn {𝑀}) | |
30 | 3, 3, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → {〈𝑀, 𝑀〉} Fn {𝑀}) |
31 | 28, 30 | jca 512 | 1 ⊢ (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶 ∪ 𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {〈𝑀, 𝑀〉} Fn {𝑀})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 ifcif 4459 {csn 4561 〈cop 4567 class class class wbr 5074 ↦ cmpt 5157 Fn wfn 6428 (class class class)co 7275 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℤcz 12319 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 |
This theorem is referenced by: metakunt20 40144 metakunt21 40145 metakunt22 40146 metakunt25 40149 |
Copyright terms: Public domain | W3C validator |