Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfvres1 | Structured version Visualization version GIF version |
Description: A cyclic permutation is a cyclic shift on its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
Ref | Expression |
---|---|
tocycfvres1 | ⊢ (𝜑 → ((𝐶‘𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
5 | 1, 2, 3, 4 | tocycfv 30887 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
6 | 5 | reseq1d 5815 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊) ↾ ran 𝑊) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ ran 𝑊)) |
7 | fnresi 6452 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
9 | 1zzd 12037 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
10 | cshwfn 14195 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) | |
11 | 3, 9, 10 | syl2anc 588 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
12 | f1f1orn 6606 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran 𝑊) | |
13 | f1ocnv 6607 | . . . . 5 ⊢ (𝑊:dom 𝑊–1-1-onto→ran 𝑊 → ◡𝑊:ran 𝑊–1-1-onto→dom 𝑊) | |
14 | f1ofn 6596 | . . . . 5 ⊢ (◡𝑊:ran 𝑊–1-1-onto→dom 𝑊 → ◡𝑊 Fn ran 𝑊) | |
15 | 4, 12, 13, 14 | 4syl 19 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
16 | dfdm4 5728 | . . . . 5 ⊢ dom 𝑊 = ran ◡𝑊 | |
17 | wrddm 13905 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) | |
18 | 3, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
19 | ssidd 3911 | . . . . . 6 ⊢ (𝜑 → (0..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))) | |
20 | 18, 19 | eqsstrd 3926 | . . . . 5 ⊢ (𝜑 → dom 𝑊 ⊆ (0..^(♯‘𝑊))) |
21 | 16, 20 | eqsstrrid 3937 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
22 | fnco 6441 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
23 | 11, 15, 21, 22 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
24 | incom 4102 | . . . . 5 ⊢ (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) | |
25 | disjdif 4361 | . . . . 5 ⊢ (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ∅ | |
26 | 24, 25 | eqtr3i 2784 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ |
27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
28 | fnunres2 30524 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) | |
29 | 8, 23, 27, 28 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
30 | 6, 29 | eqtrd 2794 | 1 ⊢ (𝜑 → ((𝐶‘𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∖ cdif 3851 ∪ cun 3852 ∩ cin 3853 ⊆ wss 3854 ∅c0 4221 I cid 5422 ◡ccnv 5516 dom cdm 5517 ran crn 5518 ↾ cres 5519 ∘ ccom 5521 Fn wfn 6323 –1-1→wf1 6325 –1-1-onto→wf1o 6327 ‘cfv 6328 (class class class)co 7143 0cc0 10560 1c1 10561 ℤcz 12005 ..^cfzo 13067 ♯chash 13725 Word cword 13898 cyclShift ccsh 14182 toCycctocyc 30884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 ax-pre-sup 10638 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-1st 7686 df-2nd 7687 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-oadd 8109 df-er 8292 df-map 8411 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-sup 8924 df-inf 8925 df-card 9386 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-div 11321 df-nn 11660 df-n0 11920 df-z 12006 df-uz 12268 df-rp 12416 df-fz 12925 df-fzo 13068 df-fl 13196 df-mod 13272 df-hash 13726 df-word 13899 df-concat 13955 df-substr 14035 df-pfx 14065 df-csh 14183 df-tocyc 30885 |
This theorem is referenced by: cycpmconjslem1 30932 cycpmconjslem2 30933 |
Copyright terms: Public domain | W3C validator |