![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfvres1 | Structured version Visualization version GIF version |
Description: A cyclic permutation is a cyclic shift on its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
Ref | Expression |
---|---|
tocycval.1 | β’ πΆ = (toCycβπ·) |
tocycfv.d | β’ (π β π· β π) |
tocycfv.w | β’ (π β π β Word π·) |
tocycfv.1 | β’ (π β π:dom πβ1-1βπ·) |
Ref | Expression |
---|---|
tocycfvres1 | β’ (π β ((πΆβπ) βΎ ran π) = ((π cyclShift 1) β β‘π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . . . 4 β’ πΆ = (toCycβπ·) | |
2 | tocycfv.d | . . . 4 β’ (π β π· β π) | |
3 | tocycfv.w | . . . 4 β’ (π β π β Word π·) | |
4 | tocycfv.1 | . . . 4 β’ (π β π:dom πβ1-1βπ·) | |
5 | 1, 2, 3, 4 | tocycfv 32795 | . . 3 β’ (π β (πΆβπ) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) |
6 | 5 | reseq1d 5978 | . 2 β’ (π β ((πΆβπ) βΎ ran π) = ((( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π)) βΎ ran π)) |
7 | fnresi 6678 | . . . 4 β’ ( I βΎ (π· β ran π)) Fn (π· β ran π) | |
8 | 7 | a1i 11 | . . 3 β’ (π β ( I βΎ (π· β ran π)) Fn (π· β ran π)) |
9 | 1zzd 12609 | . . . . 5 β’ (π β 1 β β€) | |
10 | cshwfn 14769 | . . . . 5 β’ ((π β Word π· β§ 1 β β€) β (π cyclShift 1) Fn (0..^(β―βπ))) | |
11 | 3, 9, 10 | syl2anc 583 | . . . 4 β’ (π β (π cyclShift 1) Fn (0..^(β―βπ))) |
12 | f1f1orn 6844 | . . . . 5 β’ (π:dom πβ1-1βπ· β π:dom πβ1-1-ontoβran π) | |
13 | f1ocnv 6845 | . . . . 5 β’ (π:dom πβ1-1-ontoβran π β β‘π:ran πβ1-1-ontoβdom π) | |
14 | f1ofn 6834 | . . . . 5 β’ (β‘π:ran πβ1-1-ontoβdom π β β‘π Fn ran π) | |
15 | 4, 12, 13, 14 | 4syl 19 | . . . 4 β’ (π β β‘π Fn ran π) |
16 | dfdm4 5892 | . . . . 5 β’ dom π = ran β‘π | |
17 | wrddm 14489 | . . . . . . 7 β’ (π β Word π· β dom π = (0..^(β―βπ))) | |
18 | 3, 17 | syl 17 | . . . . . 6 β’ (π β dom π = (0..^(β―βπ))) |
19 | ssidd 4001 | . . . . . 6 β’ (π β (0..^(β―βπ)) β (0..^(β―βπ))) | |
20 | 18, 19 | eqsstrd 4016 | . . . . 5 β’ (π β dom π β (0..^(β―βπ))) |
21 | 16, 20 | eqsstrrid 4027 | . . . 4 β’ (π β ran β‘π β (0..^(β―βπ))) |
22 | fnco 6666 | . . . 4 β’ (((π cyclShift 1) Fn (0..^(β―βπ)) β§ β‘π Fn ran π β§ ran β‘π β (0..^(β―βπ))) β ((π cyclShift 1) β β‘π) Fn ran π) | |
23 | 11, 15, 21, 22 | syl3anc 1369 | . . 3 β’ (π β ((π cyclShift 1) β β‘π) Fn ran π) |
24 | disjdifr 4468 | . . . 4 β’ ((π· β ran π) β© ran π) = β | |
25 | 24 | a1i 11 | . . 3 β’ (π β ((π· β ran π) β© ran π) = β ) |
26 | fnunres2 6661 | . . 3 β’ ((( I βΎ (π· β ran π)) Fn (π· β ran π) β§ ((π cyclShift 1) β β‘π) Fn ran π β§ ((π· β ran π) β© ran π) = β ) β ((( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π)) βΎ ran π) = ((π cyclShift 1) β β‘π)) | |
27 | 8, 23, 25, 26 | syl3anc 1369 | . 2 β’ (π β ((( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π)) βΎ ran π) = ((π cyclShift 1) β β‘π)) |
28 | 6, 27 | eqtrd 2767 | 1 β’ (π β ((πΆβπ) βΎ ran π) = ((π cyclShift 1) β β‘π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 β cdif 3941 βͺ cun 3942 β© cin 3943 β wss 3944 β c0 4318 I cid 5569 β‘ccnv 5671 dom cdm 5672 ran crn 5673 βΎ cres 5674 β ccom 5676 Fn wfn 6537 β1-1βwf1 6539 β1-1-ontoβwf1o 6541 βcfv 6542 (class class class)co 7414 0cc0 11124 1c1 11125 β€cz 12574 ..^cfzo 13645 β―chash 14307 Word cword 14482 cyclShift ccsh 14756 toCycctocyc 32792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-inf 9452 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 df-hash 14308 df-word 14483 df-concat 14539 df-substr 14609 df-pfx 14639 df-csh 14757 df-tocyc 32793 |
This theorem is referenced by: cycpmconjslem1 32840 cycpmconjslem2 32841 |
Copyright terms: Public domain | W3C validator |